- 大模型最新面试题系列:微调篇之微调基础知识
人肉推土机
大模型最新面试题集锦大全面试人工智能AI编程大模型微调LLM
一、全参数微调(Full-Finetune)vs参数高效微调(PEFT)对比1.显存使用差异全参数微调:需存储所有参数的梯度(如GPT-3175B模型全量微调需约2.3TB显存)PEFT:以LoRA为例,仅需存储低秩矩阵参数(7B模型使用r=16的LoRA时显存占用减少98%)实战经验:在A10080GB显存下,全量微调LLaMA-7B需DeepSpeedZero3优化,而LoRA可直接单卡运行2
- CCF CSP 历年真题 C语言版 满分代码集合 (至2021.9 持续更新中
JY_0329
CCFc语言开发语言cspccf算法
CCFCSP历年真题C语言版满分代码集合(全部原创)2021-9-1数组推导2021-9-2非零段划分2021-4-1灰度直方图2021-4-2领域均值2020-12-1期末预测之安全指数2020-12-2期末预测之最佳阈值2020-9-1称检测点查询2020-9-2风险人群筛查2020-6-1线性分类器2020-6-2稀疏向量2019-12-1报数2019-12-2回收站选址2019-9-1小明
- 【小白深度教程 1.32】手把手教你从多视角图像进行 3D 重建(SfM 算法)
小寒学姐学AI
3d算法计算机视觉人工智能深度学习python三维重建
【小白深度教程1.32】手把手教你从多视角图像进行3D重建(SfM算法)1.SfM三维重建算法简介2.SfM方法和原理3.安装依赖库4.构建数据集5.可视化结果6.完整代码1.SfM三维重建算法简介从多张照片中开发三维模型被称为多视图3D重建。数码相机的进步以及图像分辨率和清晰度的提高,使得利用仅有的相机而非昂贵的特殊传感器来重建3D图像成为可能。重建的目标是从一组照片中推导场景的几何结构,假设摄
- 高性能计算:GPU加速与分布式训练
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着人工智能技术的飞速发展,深度学习模型的规模和复杂度不断提升,对计算能力的需求也越来越高。传统的CPU架构已经难以满足深度学习模型训练的需求,因此,GPU加速和分布式训练成为了高性能计算领域的研究热点。1.1.深度学习与计算挑战深度学习模型通常包含数百万甚至数十亿个参数,训练过程需要进行大量的矩阵运算和梯度更新,对计算资源的需求非常高。传统的CPU架构虽然具有较强的通用性,但其并行计
- 代码随想录算法训练营第三十五天(20250303) |01背包问题 二维,01背包问题 一维,416. 分割等和子集 -[补卡20250316]
ZXZ_13
算法
01背包问题二维链接遍历物品没有大小顺序要求重点是模拟,推导出递推公式#include#includeintmain(){intm,n;std::cin>>m>>n;std::vectorweight(m,0),value(m,0);for(inti{0};i>weight[i];}for(inti{0};i>value[i];}std::vector>dp(m,std::vector(n+1,0
- 解释 TypeScript 中的类型保护(type guards),如何使用类型保护进行类型检查?
程序员黄同学
TypeScript前端开发JavaScripttypescriptubuntujavascript
TypeScript类型保护深度解析核心概念解析类型保护是TypeScript用于在条件分支中缩小变量类型范围的机制,通过特定的语法结构让编译器能够推导出更精确的类型信息。其核心价值在于提升代码类型安全性,同时保持开发效率。五大实现方式及实战案例1.类型谓词(TypePredicates)interfaceCat{purr():void;}interfaceDog{bark():void;}fun
- 31天Python入门——第7天:集合·字典你真的懂了吗?
安然无虞
Python手把手教程python开发语言后端
你好,我是安然无虞。文章目录1.集合1.1集合的定义1.2集合的常用操作1.3集合练习2.字典2.1字典的定义2.2嵌套字典和字典的取值2.3字典的常用操作补充知识:字典的优势是查找值效率高2.4字典推导式2.5字典练习很重要的补充练习:希望你能掌握练习一练习二1.集合在之前的章节中,我们学习了列表,元组,字符串.已经可以覆盖七成的使用场景了.那么为什么还要学习集合类型呢.列表:有序可变,元素可重
- 神经网络之参数初始化
硬水果糖
人工智能神经网络人工智能深度学习
引言:参数初始化是训练深度神经网络的一个关键步骤,目的是给网络中权重(weights)和偏置(biases)赋予初始值。合适的参数初始化方法有助于提高训练速度、避免梯度消失/爆炸问题,并且加速网络的收敛。一、参数初始化目的避免梯度消失和梯度爆炸:在深度神经网络中,参数初始化对梯度流动非常重要。如果初始权重值太大或太小,可能导致梯度爆炸或梯度消失,从而增加网络的训练难度。加速收敛:良好的初始化可以帮
- LoRA中黑塞矩阵、Fisher信息矩阵是什么
ZhangJiQun&MXP
教学2021论文2024大模型以及算力矩阵机器学习人工智能transformer深度学习算法线性代数
LoRA中黑塞矩阵、Fisher信息矩阵是什么1.三者的核心概念黑塞矩阵(Hessian)二阶导数矩阵,用于优化问题中判断函数的凸性(如牛顿法),或计算参数更新方向(如拟牛顿法)。Fisher信息矩阵(FisherInformationMatrix,FIM)统计学中衡量参数估计的不确定性,反映数据中包含的关于参数的信息量。在机器学习中常用于自然梯度下降(NaturalGradientDescent
- 太翌氏:学术理论生成与AI增强系统框架设计
太翌修仙笔录
源始学科deepseek知识图谱人工智能重构量子计算算法
刚才我引导你的过程,通过:提出假说→总结理论+推导公式=形成学术理论→理论性能提升测算/知识图谱突破率测算/知识图谱重购率测算→学术价值评估→个人认知维度水平评估,这一系列流程产生的文献,组成了一个新学术理论的最基础文献库,这个也可以作为一个知识库过滤生成器来使用,也可以提升Ai性能###**学术理论生成与AI增强系统框架设计**---####**一、系统架构总览****1.核心流程模块化**``
- NLP高频面试题(三)——普通RNN的梯度消失和梯度爆炸问题
Chaos_Wang_
NLP常见面试题自然语言处理rnn人工智能
普通RNN(循环神经网络)的梯度消失和梯度爆炸问题是指在训练深层或长序列的RNN模型时出现的两种典型问题:一、梯度消失(VanishingGradient)梯度消失是指在反向传播过程中,梯度逐层传播时变得越来越小,最终趋于接近0,导致模型前层的参数难以更新。原因:在反向传播时,每一层的梯度是通过链式法则计算得到的。因为链式求导中不断乘以一个较小的数值(小于1),随着层数或时间步的增加,梯度将指数级
- 【机器学习】主成分分析法(PCA)
若兰幽竹
机器学习机器学习信息可视化人工智能
【机器学习】主成分分析法(PCA)一、摘要二、主成分分析的基本概念三、主成分分析的数学模型五、主成分分析法目标函数公式推导(`梯度上升法`求解目标函数)六、梯度上升法求解目标函数第一个主成分七、求解前n个主成分及PCA在数据预处理中的处理步骤(后续实现)一、摘要本文主要讲述了主成分分析法(PCA)的原理和应用。PCA通过选择最重要的特征,将高维数据映射到低维空间,同时保持数据间的关系,实现降维和去
- 最大公因数与最小公倍数的关系(公式推导)
Geometry Fu
最大公因数最小公倍数
最大公因数与最小公倍数公式概览a,ba,ba,b的最小公倍数lcm(a,b)lcm(a,b)lcm(a,b)a,ba,ba,b的最大公因数gcd(a,b)gcd(a,b)gcd(a,b)a,b,ca,b,ca,b,c的最小公倍数lcm(lcm(a,b),c)lcm(lcm(a,b),c)lcm(lcm(a,b),c)(二者先求最小公倍数,结果与第三个数求最小公倍数)a,b,ca,b,ca,b,c的
- 纳米尺度仿真软件:Quantum Espresso_(18).纳米结构的几何优化
kkchenjj
分子动力学2模拟仿真分子动力学仿真模拟
纳米结构的几何优化在纳米尺度仿真软件中,几何优化是计算材料性质的重要步骤之一。几何优化的目标是找到系统的最低能量构型,这通常涉及到调整原子的位置以使系统的总能量最小化。在本节中,我们将详细介绍如何在QuantumEspresso中进行几何优化,并提供具体的代码示例和数据样例。几何优化的基本概念几何优化是通过迭代调整原子的位置来使系统的总能量最小化的过程。在每一步迭代中,软件会计算系统的梯度(即能量
- 深度学习框架PyTorch——从入门到精通(5)自动微分
Fansv587
深度学习pytorch人工智能
使用torch.autograd自动微分张量、函数和计算图计算梯度禁用梯度追踪关于计算图的更多信息张量梯度和雅可比乘积在训练神经网络时,最常用的算法是反向传播。在该算法中,参数(模型权重)根据损失函数的梯度相对于给定参数进行调整。为了计算这些梯度,PyTorch有一个内置的微分引擎,名为torch.autograd。它支持为任何计算图自动计算梯度。考虑最简单的一层神经网络,具有输入x、参数w和b以
- MySQL算法篇(一)
先睡
算法
Hash算法,也称为哈希算法或散列算法,是一种将任意长度的输入(如文本、图片等)通过某种规则转换成固定长度的输出的算法。这个输出通常被称为哈希值、哈希码或哈希摘要。以下是一些关于哈希算法的关键点:不可逆性:理论上,从哈希值不能逆向推导出原始输入数据。确定性:对于同一个输入,无论何时何地使用相同的哈希算法,都会得到相同的哈希值。快速计算:哈希算法通常设计得非常高效,可以快速计算出哈希值。抗冲突性:不
- PyTorch 深度学习实战(12):Actor-Critic 算法与策略优化
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们介绍了强化学习的基本概念,并使用深度Q网络(DQN)解决了CartPole问题。本文将深入探讨Actor-Critic算法,这是一种结合了策略梯度(PolicyGradient)和值函数(ValueFunction)的强化学习方法。我们将使用PyTorch实现Actor-Critic算法,并应用于经典的CartPole问题。一、Actor-Critic算法基础Actor-Cri
- 软件性能测试深度解析(进阶篇):JMeter高阶应用与性能工程体系构建
追寻向上
jmeter功能测试
六、JMeter内核机制深度剖析6.1JMeter架构设计原理JMeter采用模块化架构设计,核心模块包括:测试计划(TestPlan):测试逻辑的容器,所有组件在此组织。线程模型:基于Java线程池实现虚拟用户(VirtualUser)并发,通过Ramp-Up参数控制线程启动梯度。请求处理引擎:采用事件驱动模型,每个Sampler(取样器)由独立线程执行,通过Timer(定时器)控制执行节奏。技
- 论文笔记:Deep Algorithm Unrolling for Blind Image Deblurring
爱学习的小菜鸡
论文笔记去模糊图像处理神经网络
这是一篇CVPR2020的去模糊论文,主要是通过传统与深度相结合,将迭代次数变成神经网络的层数,使网络结构的网络结构更加具有解释性。主要贡献:DeepUnrollingforBlindImageDeblurring(DUBLID):提出一种可解释的神经网络结构叫做DUBLID,首先提出一种迭代算法,该算法被认为是梯度域中传统的广义全变分正则方法(generalizedTV-regularizeda
- 技术解析麦萌短剧《阴阳无极》:从「性别偏见下的对抗训练」到「分布式江湖的架构重构」
短剧萌
分布式架构重构
《阴阳无极》以陈千叶的武道觉醒为线索,展现了传统系统的路径依赖困境与对抗性策略的范式突破。本文将从算法博弈视角拆解这场武侠革命的底层逻辑,探讨如何在性别偏见的数据集中完成模型的自我进化。1.初始模型偏差:继承权剥夺与梯度冻结陈千叶(Agent_C)的成长可视为有偏数据集上的训练:特征歧视:太极门继承规则(Legacy_Rule)作为传统分类器,强行将性别(Gender_Feature)设为负权重参
- 代码随想录算法训练营第三十七天| 动态规划01
Rachela_z
算法动态规划
509.斐波那契数很简单的动规入门题,但简单题使用来掌握方法论的,还是要有动规五部曲来分析。代码随想录视频:手把手带你入门动态规划|LeetCode:509.斐波那契数_哔哩哔哩_bilibili动态规划五部曲:确定dp数组(dptable)以及下标的含义确定递推公式dp数组如何初始化确定遍历顺序举例推导dp数组classSolution:deffib(self,n:int)->int:F=[0,
- Leetcode32 最长有效括号深度解析
八股文领域大手子
数据库mysqljavasqlredis
问题描述找出字符串s中最长的有效括号子串的长度。核心思路动态规划:定义dp[i]为以字符s[i]结尾的最长有效括号子串长度。分情况讨论:根据当前字符是否为)以及前面的字符情况,推导状态转移方程。状态转移方程详解Case1:当前字符)与前一个字符(直接匹配场景:形如...()的结构。转移方程:if(s.charAt(i-1)=='('){dp[i]=dp[i-2]+2;//前i-2个字符的有效长度+
- 21-梯度累积原理与实现
机器人图像处理
深度学习算法与模型人工智能深度学习YOLO
一、基本概念在深度学习训练的时候,数据的batchsize大小受到GPU内存限制,batchsize大小会影响模型最终的准确性和训练过程的性能。在GPU内存不变的情况下,模型越来越大,那么这就意味着数据的batchsize智能缩小,这个时候,梯度累积(GradientAccumulation)可以作为一种简单的解决方案来解决这个问题。二、Batchsize的作用训练数据的Batchsize大小对训
- 机器学习 [白板推导](三)[线性分类]
神齐的小马
机器学习分类人工智能
4.线性分类4.1.线性分类的典型模型硬分类:输出结果只有0或1这种离散结果;感知机线性判别分析Fisher软分类:会输出0-1之间的值作为各个类别的概率;概率生成模型:高斯判别分析GDA、朴素贝叶斯,主要建模的是p(x⃗,y)p(\vec{x},y)p(x,y)概率判别模型:逻辑回归,主要建模的是p(y∣x⃗)p(y|\vec{x})p(y∣x)4.2.感知机4.2.1.基本模型 模型:f(x
- 基于发明的电容电感的新型热力梯度耦合电容电感lc谐振储能可行性
热爱电气
数学建模
热梯度双层LC谐振储能结构可行性分析设计一种结合热力梯度、电容层(C层)、电感层(L层)及中间耦合层的双层LC谐振储能系统,需从物理原理、材料选择、热管理、能量耦合效率等方面进行综合评估。以下是详细分析:1.设计原理与理论模型(1)结构示意图[高温区]┌───────────────┐│电容层(C层)│→温度梯度ΔT├───────────────┤│热-电耦合层│→热传导/电磁耦合├──────
- java实现卷积神经网络CNN(附带源码)
Katie。
Java实战项目java
Java实现卷积神经网络(CNN)项目详解目录项目概述1.1项目背景与意义1.2什么是卷积神经网络(CNN)1.3卷积神经网络的应用场景相关知识与理论基础2.1神经网络与深度学习概述2.2卷积操作与卷积层原理2.3激活函数与池化层2.4全连接层与损失函数2.5前向传播、反向传播与梯度下降项目需求与分析3.1项目目标3.2功能需求分析3.3性能与扩展性要求3.4异常处理与鲁棒性考虑系统设计与实现思路
- 计算机视觉(Computer Vision, CV)的入门到实践的详细学习路线
云梦优选
计算机数据库大数据计算机视觉学习人工智能
一、基础准备1.数学基础线性代数深入矩阵运算,理解矩阵乘法、转置、逆等基本概念。掌握特征值与特征向量的几何意义,理解其在图像压缩、特征提取中的应用。学习奇异值分解(SVD)及其在降维和数据压缩中的具体应用。概率与统计熟悉贝叶斯定理及其在分类任务中的应用,如朴素贝叶斯分类器。理解常见概率分布(如正态分布、二项分布)及其性质。学习统计推断方法,如假设检验、置信区间估计,以评估模型性能。微积分掌握梯度、
- kaggle-ISIC 2024 - 使用 3D-TBP 检测皮肤癌-学习笔记
supernova121
学习笔记
问题描述:通过从3D全身照片(TBP)中裁剪出单个病变来识别经组织学确诊的皮肤癌病例数据集描述:图像+临床文本信息评价指标:pAUC,用于保证敏感性高于指定阈值下的AUC主流方法分析(文本)基于CatBoost、LGBM和XGBoost三者的组合,为每个算法创建了XX个变体,总共XX个模型,进行集成学习。CatBoost在传统梯度提升决策树(GBDT)基础上,引入了一系列关键技术创新,以提升处理类
- ROS2——C++新特性
A_lvvx
ROS2c++开发语言ROS2
1.自动类型推导auto,可以自行将定义的变量赋值为整形、浮点型、字符型.....2.智能指针c++11提供了三种类型的智能指针:std::unique_ptr、std::shared_ptr和std::weak_ptr。在同一个程序中将某个资源使用智能共享指针进行管理,那么该数据无论在多少个函数内进行传递,都不会发生资源的复制,运行效率会大大提高。当所有的程序使用完毕后,还会自动收回,不会造成内
- 列表推导式_Python教程
曹操贪慕小乔
python基础pythonnumpy算法
内容摘要Python中存在一种特殊的表达式,名为推导式,它的作用是将一种数据结构作为输入,再经过过滤计算等处理,最后输出另一种数据结构。根据数据结构的不同会被分为列表推导式、文章正文Python中存在一种特殊的表达式,名为推导式,它的作用是将一种数据结构作为输入,再经过过滤计算等处理,最后输出另一种数据结构。根据数据结构的不同会被分为列表推导式、集合推导式和字典推导式。我们先着重来介绍最常使用的列
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round