题意:给定同一个图上的两种路径,求出从某点出发到另一点的路径长度来回长度之比最大的情况。该题对两套图的处理让代码十分恶心,而且最后还要输出路径。计算出最优值最后在计算一次路径,幸好没有要求在相同的情况下按照字典序最小输出。
代码如下:
#include <iostream> #include <cstdlib> #include <cstring> #include <cstdio> #include <queue> using namespace std; const int INF = 0x3f3f3f3f; int N, M, K; struct Edge { int v, ct, next; }e[1005], re[1005]; int idx, ridx, head[1005], rhead[1005]; int path[1005]; int dis[1005][1005]; int rdis[1005][1005]; bool vis[1005]; void insert(int a, int b, int ct, Edge e[], int head[], int &idx) { ++idx; e[idx].v = b, e[idx].ct = ct; e[idx].next = head[a]; head[a] = idx; } void spfa(int sta, int dis[], Edge e[], int head[], int fn) { if (fn == 1) { memset(dis, 0, sizeof (int) * 1005); } else { memset(dis, 0x3f, sizeof (int) * 1005); } memset(vis, 0, sizeof (vis)); queue<int>q; dis[sta] = 0; vis[sta] = true; q.push(sta); while (!q.empty()) { int v = q.front(); q.pop(); vis[v] = false; for (int i = head[v]; i != -1; i = e[i].next) { if (fn == 1) { // 下坡 if (dis[e[i].v] < dis[v] + e[i].ct) { dis[e[i].v] = dis[v] + e[i].ct; if (!vis[e[i].v]) { q.push(e[i].v); vis[e[i].v] = true; } } } else { if (dis[e[i].v] > dis[v] + e[i].ct) { dis[e[i].v] = dis[v] + e[i].ct; if (!vis[e[i].v]) { q.push(e[i].v); vis[e[i].v] = true; } } } } } } void spfa_path(int sta, int dis[], Edge e[], int head[], int fn) { if (fn == 1) { memset(dis, 0, sizeof (int) * 1005); } else { memset(dis, 0x3f, sizeof (int) * 1005); } memset(path, 0xff, sizeof (path)); memset(vis, 0, sizeof (vis)); queue<int>q; dis[sta] = 0; vis[sta] = true; q.push(sta); while (!q.empty()) { int v = q.front(); q.pop(); vis[v] = false; for (int i = head[v]; i != -1; i = e[i].next) { if (fn == 1) { // 下坡 if (dis[e[i].v] < dis[v] + e[i].ct) { dis[e[i].v] = dis[v] + e[i].ct; path[e[i].v] = v; if (!vis[e[i].v]) { q.push(e[i].v); vis[e[i].v] = true; } } } else { if (dis[e[i].v] > dis[v] + e[i].ct) { dis[e[i].v] = dis[v] + e[i].ct; path[e[i].v] = v; if (!vis[e[i].v]) { q.push(e[i].v); vis[e[i].v] = true; } } } } } } void prt(int x, int &first) { if (path[x] != -1) { prt(path[x], first); } if (first) { printf("%d", x); first = 0; } else { printf(" %d", x); } } int main() { int T; cin >> T; while (T--) { idx = ridx = -1; memset(head, 0xff, sizeof (head)); memset(rhead, 0xff, sizeof (rhead)); int a, b, c; cin >> N >> M >> K; // M条下坡的边 for (int i = 0; i < M; ++i) { scanf("%d %d %d", &a, &b, &c); insert(a, b, c, e, head, idx); } // K条上山的边 for (int i = 0; i < K; ++i) { scanf("%d %d %d", &a, &b, &c); insert(a, b, c, re, rhead, ridx); } for (int i = 1; i <= N; ++i) { spfa(i, dis[i], e, head, 1); // 下坡运算 spfa(i, rdis[i], re, rhead, 2); // 上坡运算 } double Max = 0; int x, y; for (int i = 1; i <= N; ++i) { for (int j = 1; j <= N; ++j) { if (rdis[j][i] != 0) { if (1.0*dis[i][j]/rdis[j][i] > Max) { x = i, y = j; Max = max(1.0*dis[i][j]/rdis[j][i], Max); } } } } int first = 1; spfa_path(y, rdis[x], re, rhead, 2); prt(path[x], first); spfa_path(x, dis[x], e, head, 1); prt(y, first); printf("\n%.3f\n", Max); } return 0; }