Go-ethereum 源码解析之 miner/worker.go (上)

Go-ethereum 源码解析之 miner/worker.go (上)

Source Code

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see .

package miner

import (
    "bytes"
    "errors"
    "math/big"
    "sync"
    "sync/atomic"
    "time"

    mapset "github.com/deckarep/golang-set"
    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/consensus"
    "github.com/ethereum/go-ethereum/consensus/misc"
    "github.com/ethereum/go-ethereum/core"
    "github.com/ethereum/go-ethereum/core/state"
    "github.com/ethereum/go-ethereum/core/types"
    "github.com/ethereum/go-ethereum/core/vm"
    "github.com/ethereum/go-ethereum/event"
    "github.com/ethereum/go-ethereum/log"
    "github.com/ethereum/go-ethereum/params"
)

const (
    // resultQueueSize is the size of channel listening to sealing result.
    resultQueueSize = 10

    // txChanSize is the size of channel listening to NewTxsEvent.
    // The number is referenced from the size of tx pool.
    txChanSize = 4096

    // chainHeadChanSize is the size of channel listening to ChainHeadEvent.
    chainHeadChanSize = 10

    // chainSideChanSize is the size of channel listening to ChainSideEvent.
    chainSideChanSize = 10

    // resubmitAdjustChanSize is the size of resubmitting interval adjustment channel.
    resubmitAdjustChanSize = 10

    // miningLogAtDepth is the number of confirmations before logging successful mining.
    miningLogAtDepth = 7

    // minRecommitInterval is the minimal time interval to recreate the mining block with
    // any newly arrived transactions.
    minRecommitInterval = 1 * time.Second

    // maxRecommitInterval is the maximum time interval to recreate the mining block with
    // any newly arrived transactions.
    maxRecommitInterval = 15 * time.Second

    // intervalAdjustRatio is the impact a single interval adjustment has on sealing work
    // resubmitting interval.
    intervalAdjustRatio = 0.1

    // intervalAdjustBias is applied during the new resubmit interval calculation in favor of
    // increasing upper limit or decreasing lower limit so that the limit can be reachable.
    intervalAdjustBias = 200 * 1000.0 * 1000.0

    // staleThreshold is the maximum depth of the acceptable stale block.
    staleThreshold = 7
)

// environment is the worker's current environment and holds all of the current state information.
type environment struct {
    signer types.Signer

    state     *state.StateDB // apply state changes here
    ancestors mapset.Set     // ancestor set (used for checking uncle parent validity)
    family    mapset.Set     // family set (used for checking uncle invalidity)
    uncles    mapset.Set     // uncle set
    tcount    int            // tx count in cycle
    gasPool   *core.GasPool  // available gas used to pack transactions

    header   *types.Header
    txs      []*types.Transaction
    receipts []*types.Receipt
}

// task contains all information for consensus engine sealing and result submitting.
type task struct {
    receipts  []*types.Receipt
    state     *state.StateDB
    block     *types.Block
    createdAt time.Time
}

const (
    commitInterruptNone int32 = iota
    commitInterruptNewHead
    commitInterruptResubmit
)

// newWorkReq represents a request for new sealing work submitting with relative interrupt notifier.
type newWorkReq struct {
    interrupt *int32
    noempty   bool
    timestamp int64
}

// intervalAdjust represents a resubmitting interval adjustment.
type intervalAdjust struct {
    ratio float64
    inc   bool
}

// worker is the main object which takes care of submitting new work to consensus engine
// and gathering the sealing result.
type worker struct {
    config *params.ChainConfig
    engine consensus.Engine
    eth    Backend
    chain  *core.BlockChain

    gasFloor uint64
    gasCeil  uint64

    // Subscriptions
    mux          *event.TypeMux
    txsCh        chan core.NewTxsEvent
    txsSub       event.Subscription
    chainHeadCh  chan core.ChainHeadEvent
    chainHeadSub event.Subscription
    chainSideCh  chan core.ChainSideEvent
    chainSideSub event.Subscription

    // Channels
    newWorkCh          chan *newWorkReq
    taskCh             chan *task
    resultCh           chan *types.Block
    startCh            chan struct{}
    exitCh             chan struct{}
    resubmitIntervalCh chan time.Duration
    resubmitAdjustCh   chan *intervalAdjust

    current        *environment                 // An environment for current running cycle.
    possibleUncles map[common.Hash]*types.Block // A set of side blocks as the possible uncle blocks.
    unconfirmed    *unconfirmedBlocks           // A set of locally mined blocks pending canonicalness confirmations.

    mu       sync.RWMutex // The lock used to protect the coinbase and extra fields
    coinbase common.Address
    extra    []byte

    pendingMu    sync.RWMutex
    pendingTasks map[common.Hash]*task

    snapshotMu    sync.RWMutex // The lock used to protect the block snapshot and state snapshot
    snapshotBlock *types.Block
    snapshotState *state.StateDB

    // atomic status counters
    running int32 // The indicator whether the consensus engine is running or not.
    newTxs  int32 // New arrival transaction count since last sealing work submitting.

    // Test hooks
    newTaskHook  func(*task)                        // Method to call upon receiving a new sealing task.
    skipSealHook func(*task) bool                   // Method to decide whether skipping the sealing.
    fullTaskHook func()                             // Method to call before pushing the full sealing task.
    resubmitHook func(time.Duration, time.Duration) // Method to call upon updating resubmitting interval.
}

func newWorker(config *params.ChainConfig, engine consensus.Engine, eth Backend, mux *event.TypeMux, recommit time.Duration, gasFloor, gasCeil uint64) *worker {
    worker := &worker{
        config:             config,
        engine:             engine,
        eth:                eth,
        mux:                mux,
        chain:              eth.BlockChain(),
        gasFloor:           gasFloor,
        gasCeil:            gasCeil,
        possibleUncles:     make(map[common.Hash]*types.Block),
        unconfirmed:        newUnconfirmedBlocks(eth.BlockChain(), miningLogAtDepth),
        pendingTasks:       make(map[common.Hash]*task),
        txsCh:              make(chan core.NewTxsEvent, txChanSize),
        chainHeadCh:        make(chan core.ChainHeadEvent, chainHeadChanSize),
        chainSideCh:        make(chan core.ChainSideEvent, chainSideChanSize),
        newWorkCh:          make(chan *newWorkReq),
        taskCh:             make(chan *task),
        resultCh:           make(chan *types.Block, resultQueueSize),
        exitCh:             make(chan struct{}),
        startCh:            make(chan struct{}, 1),
        resubmitIntervalCh: make(chan time.Duration),
        resubmitAdjustCh:   make(chan *intervalAdjust, resubmitAdjustChanSize),
    }
    // Subscribe NewTxsEvent for tx pool
    worker.txsSub = eth.TxPool().SubscribeNewTxsEvent(worker.txsCh)
    // Subscribe events for blockchain
    worker.chainHeadSub = eth.BlockChain().SubscribeChainHeadEvent(worker.chainHeadCh)
    worker.chainSideSub = eth.BlockChain().SubscribeChainSideEvent(worker.chainSideCh)

    // Sanitize recommit interval if the user-specified one is too short.
    if recommit < minRecommitInterval {
        log.Warn("Sanitizing miner recommit interval", "provided", recommit, "updated", minRecommitInterval)
        recommit = minRecommitInterval
    }

    go worker.mainLoop()
    go worker.newWorkLoop(recommit)
    go worker.resultLoop()
    go worker.taskLoop()

    // Submit first work to initialize pending state.
    worker.startCh <- struct{}{}

    return worker
}

// setEtherbase sets the etherbase used to initialize the block coinbase field.
func (w *worker) setEtherbase(addr common.Address) {
    w.mu.Lock()
    defer w.mu.Unlock()
    w.coinbase = addr
}

// setExtra sets the content used to initialize the block extra field.
func (w *worker) setExtra(extra []byte) {
    w.mu.Lock()
    defer w.mu.Unlock()
    w.extra = extra
}

// setRecommitInterval updates the interval for miner sealing work recommitting.
func (w *worker) setRecommitInterval(interval time.Duration) {
    w.resubmitIntervalCh <- interval
}

// pending returns the pending state and corresponding block.
func (w *worker) pending() (*types.Block, *state.StateDB) {
    // return a snapshot to avoid contention on currentMu mutex
    w.snapshotMu.RLock()
    defer w.snapshotMu.RUnlock()
    if w.snapshotState == nil {
        return nil, nil
    }
    return w.snapshotBlock, w.snapshotState.Copy()
}

// pendingBlock returns pending block.
func (w *worker) pendingBlock() *types.Block {
    // return a snapshot to avoid contention on currentMu mutex
    w.snapshotMu.RLock()
    defer w.snapshotMu.RUnlock()
    return w.snapshotBlock
}

// start sets the running status as 1 and triggers new work submitting.
func (w *worker) start() {
    atomic.StoreInt32(&w.running, 1)
    w.startCh <- struct{}{}
}

// stop sets the running status as 0.
func (w *worker) stop() {
    atomic.StoreInt32(&w.running, 0)
}

// isRunning returns an indicator whether worker is running or not.
func (w *worker) isRunning() bool {
    return atomic.LoadInt32(&w.running) == 1
}

// close terminates all background threads maintained by the worker.
// Note the worker does not support being closed multiple times.
func (w *worker) close() {
    close(w.exitCh)
}

// newWorkLoop is a standalone goroutine to submit new mining work upon received events.
func (w *worker) newWorkLoop(recommit time.Duration) {
    var (
        interrupt   *int32
        minRecommit = recommit // minimal resubmit interval specified by user.
        timestamp   int64      // timestamp for each round of mining.
    )

    timer := time.NewTimer(0)
    <-timer.C // discard the initial tick

    // commit aborts in-flight transaction execution with given signal and resubmits a new one.
    commit := func(noempty bool, s int32) {
        if interrupt != nil {
            atomic.StoreInt32(interrupt, s)
        }
        interrupt = new(int32)
        w.newWorkCh <- &newWorkReq{interrupt: interrupt, noempty: noempty, timestamp: timestamp}
        timer.Reset(recommit)
        atomic.StoreInt32(&w.newTxs, 0)
    }
    // recalcRecommit recalculates the resubmitting interval upon feedback.
    recalcRecommit := func(target float64, inc bool) {
        var (
            prev = float64(recommit.Nanoseconds())
            next float64
        )
        if inc {
            next = prev*(1-intervalAdjustRatio) + intervalAdjustRatio*(target+intervalAdjustBias)
            // Recap if interval is larger than the maximum time interval
            if next > float64(maxRecommitInterval.Nanoseconds()) {
                next = float64(maxRecommitInterval.Nanoseconds())
            }
        } else {
            next = prev*(1-intervalAdjustRatio) + intervalAdjustRatio*(target-intervalAdjustBias)
            // Recap if interval is less than the user specified minimum
            if next < float64(minRecommit.Nanoseconds()) {
                next = float64(minRecommit.Nanoseconds())
            }
        }
        recommit = time.Duration(int64(next))
    }
    // clearPending cleans the stale pending tasks.
    clearPending := func(number uint64) {
        w.pendingMu.Lock()
        for h, t := range w.pendingTasks {
            if t.block.NumberU64()+staleThreshold <= number {
                delete(w.pendingTasks, h)
            }
        }
        w.pendingMu.Unlock()
    }

    for {
        select {
        case <-w.startCh:
            clearPending(w.chain.CurrentBlock().NumberU64())
            timestamp = time.Now().Unix()
            commit(false, commitInterruptNewHead)

        case head := <-w.chainHeadCh:
            clearPending(head.Block.NumberU64())
            timestamp = time.Now().Unix()
            commit(false, commitInterruptNewHead)

        case <-timer.C:
            // If mining is running resubmit a new work cycle periodically to pull in
            // higher priced transactions. Disable this overhead for pending blocks.
            if w.isRunning() && (w.config.Clique == nil || w.config.Clique.Period > 0) {
                // Short circuit if no new transaction arrives.
                if atomic.LoadInt32(&w.newTxs) == 0 {
                    timer.Reset(recommit)
                    continue
                }
                commit(true, commitInterruptResubmit)
            }

        case interval := <-w.resubmitIntervalCh:
            // Adjust resubmit interval explicitly by user.
            if interval < minRecommitInterval {
                log.Warn("Sanitizing miner recommit interval", "provided", interval, "updated", minRecommitInterval)
                interval = minRecommitInterval
            }
            log.Info("Miner recommit interval update", "from", minRecommit, "to", interval)
            minRecommit, recommit = interval, interval

            if w.resubmitHook != nil {
                w.resubmitHook(minRecommit, recommit)
            }

        case adjust := <-w.resubmitAdjustCh:
            // Adjust resubmit interval by feedback.
            if adjust.inc {
                before := recommit
                recalcRecommit(float64(recommit.Nanoseconds())/adjust.ratio, true)
                log.Trace("Increase miner recommit interval", "from", before, "to", recommit)
            } else {
                before := recommit
                recalcRecommit(float64(minRecommit.Nanoseconds()), false)
                log.Trace("Decrease miner recommit interval", "from", before, "to", recommit)
            }

            if w.resubmitHook != nil {
                w.resubmitHook(minRecommit, recommit)
            }

        case <-w.exitCh:
            return
        }
    }
}

// mainLoop is a standalone goroutine to regenerate the sealing task based on the received event.
func (w *worker) mainLoop() {
    defer w.txsSub.Unsubscribe()
    defer w.chainHeadSub.Unsubscribe()
    defer w.chainSideSub.Unsubscribe()

    for {
        select {
        case req := <-w.newWorkCh:
            w.commitNewWork(req.interrupt, req.noempty, req.timestamp)

        case ev := <-w.chainSideCh:
            if _, exist := w.possibleUncles[ev.Block.Hash()]; exist {
                continue
            }
            // Add side block to possible uncle block set.
            w.possibleUncles[ev.Block.Hash()] = ev.Block
            // If our mining block contains less than 2 uncle blocks,
            // add the new uncle block if valid and regenerate a mining block.
            if w.isRunning() && w.current != nil && w.current.uncles.Cardinality() < 2 {
                start := time.Now()
                if err := w.commitUncle(w.current, ev.Block.Header()); err == nil {
                    var uncles []*types.Header
                    w.current.uncles.Each(func(item interface{}) bool {
                        hash, ok := item.(common.Hash)
                        if !ok {
                            return false
                        }
                        uncle, exist := w.possibleUncles[hash]
                        if !exist {
                            return false
                        }
                        uncles = append(uncles, uncle.Header())
                        return false
                    })
                    w.commit(uncles, nil, true, start)
                }
            }

        case ev := <-w.txsCh:
            // Apply transactions to the pending state if we're not mining.
            //
            // Note all transactions received may not be continuous with transactions
            // already included in the current mining block. These transactions will
            // be automatically eliminated.
            if !w.isRunning() && w.current != nil {
                w.mu.RLock()
                coinbase := w.coinbase
                w.mu.RUnlock()

                txs := make(map[common.Address]types.Transactions)
                for _, tx := range ev.Txs {
                    acc, _ := types.Sender(w.current.signer, tx)
                    txs[acc] = append(txs[acc], tx)
                }
                txset := types.NewTransactionsByPriceAndNonce(w.current.signer, txs)
                w.commitTransactions(txset, coinbase, nil)
                w.updateSnapshot()
            } else {
                // If we're mining, but nothing is being processed, wake on new transactions
                if w.config.Clique != nil && w.config.Clique.Period == 0 {
                    w.commitNewWork(nil, false, time.Now().Unix())
                }
            }
            atomic.AddInt32(&w.newTxs, int32(len(ev.Txs)))

        // System stopped
        case <-w.exitCh:
            return
        case <-w.txsSub.Err():
            return
        case <-w.chainHeadSub.Err():
            return
        case <-w.chainSideSub.Err():
            return
        }
    }
}

// taskLoop is a standalone goroutine to fetch sealing task from the generator and
// push them to consensus engine.
func (w *worker) taskLoop() {
    var (
        stopCh chan struct{}
        prev   common.Hash
    )

    // interrupt aborts the in-flight sealing task.
    interrupt := func() {
        if stopCh != nil {
            close(stopCh)
            stopCh = nil
        }
    }
    for {
        select {
        case task := <-w.taskCh:
            if w.newTaskHook != nil {
                w.newTaskHook(task)
            }
            // Reject duplicate sealing work due to resubmitting.
            sealHash := w.engine.SealHash(task.block.Header())
            if sealHash == prev {
                continue
            }
            // Interrupt previous sealing operation
            interrupt()
            stopCh, prev = make(chan struct{}), sealHash

            if w.skipSealHook != nil && w.skipSealHook(task) {
                continue
            }
            w.pendingMu.Lock()
            w.pendingTasks[w.engine.SealHash(task.block.Header())] = task
            w.pendingMu.Unlock()

            if err := w.engine.Seal(w.chain, task.block, w.resultCh, stopCh); err != nil {
                log.Warn("Block sealing failed", "err", err)
            }
        case <-w.exitCh:
            interrupt()
            return
        }
    }
}

// resultLoop is a standalone goroutine to handle sealing result submitting
// and flush relative data to the database.
func (w *worker) resultLoop() {
    for {
        select {
        case block := <-w.resultCh:
            // Short circuit when receiving empty result.
            if block == nil {
                continue
            }
            // Short circuit when receiving duplicate result caused by resubmitting.
            if w.chain.HasBlock(block.Hash(), block.NumberU64()) {
                continue
            }
            var (
                sealhash = w.engine.SealHash(block.Header())
                hash     = block.Hash()
            )
            w.pendingMu.RLock()
            task, exist := w.pendingTasks[sealhash]
            w.pendingMu.RUnlock()
            if !exist {
                log.Error("Block found but no relative pending task", "number", block.Number(), "sealhash", sealhash, "hash", hash)
                continue
            }
            // Different block could share same sealhash, deep copy here to prevent write-write conflict.
            var (
                receipts = make([]*types.Receipt, len(task.receipts))
                logs     []*types.Log
            )
            for i, receipt := range task.receipts {
                receipts[i] = new(types.Receipt)
                *receipts[i] = *receipt
                // Update the block hash in all logs since it is now available and not when the
                // receipt/log of individual transactions were created.
                for _, log := range receipt.Logs {
                    log.BlockHash = hash
                }
                logs = append(logs, receipt.Logs...)
            }
            // Commit block and state to database.
            stat, err := w.chain.WriteBlockWithState(block, receipts, task.state)
            if err != nil {
                log.Error("Failed writing block to chain", "err", err)
                continue
            }
            log.Info("Successfully sealed new block", "number", block.Number(), "sealhash", sealhash, "hash", hash,
                "elapsed", common.PrettyDuration(time.Since(task.createdAt)))

            // Broadcast the block and announce chain insertion event
            w.mux.Post(core.NewMinedBlockEvent{Block: block})

            var events []interface{}
            switch stat {
            case core.CanonStatTy:
                events = append(events, core.ChainEvent{Block: block, Hash: block.Hash(), Logs: logs})
                events = append(events, core.ChainHeadEvent{Block: block})
            case core.SideStatTy:
                events = append(events, core.ChainSideEvent{Block: block})
            }
            w.chain.PostChainEvents(events, logs)

            // Insert the block into the set of pending ones to resultLoop for confirmations
            w.unconfirmed.Insert(block.NumberU64(), block.Hash())

        case <-w.exitCh:
            return
        }
    }
}

// makeCurrent creates a new environment for the current cycle.
func (w *worker) makeCurrent(parent *types.Block, header *types.Header) error {
    state, err := w.chain.StateAt(parent.Root())
    if err != nil {
        return err
    }
    env := &environment{
        signer:    types.NewEIP155Signer(w.config.ChainID),
        state:     state,
        ancestors: mapset.NewSet(),
        family:    mapset.NewSet(),
        uncles:    mapset.NewSet(),
        header:    header,
    }

    // when 08 is processed ancestors contain 07 (quick block)
    for _, ancestor := range w.chain.GetBlocksFromHash(parent.Hash(), 7) {
        for _, uncle := range ancestor.Uncles() {
            env.family.Add(uncle.Hash())
        }
        env.family.Add(ancestor.Hash())
        env.ancestors.Add(ancestor.Hash())
    }

    // Keep track of transactions which return errors so they can be removed
    env.tcount = 0
    w.current = env
    return nil
}

// commitUncle adds the given block to uncle block set, returns error if failed to add.
func (w *worker) commitUncle(env *environment, uncle *types.Header) error {
    hash := uncle.Hash()
    if env.uncles.Contains(hash) {
        return errors.New("uncle not unique")
    }
    if env.header.ParentHash == uncle.ParentHash {
        return errors.New("uncle is sibling")
    }
    if !env.ancestors.Contains(uncle.ParentHash) {
        return errors.New("uncle's parent unknown")
    }
    if env.family.Contains(hash) {
        return errors.New("uncle already included")
    }
    env.uncles.Add(uncle.Hash())
    return nil
}

// updateSnapshot updates pending snapshot block and state.
// Note this function assumes the current variable is thread safe.
func (w *worker) updateSnapshot() {
    w.snapshotMu.Lock()
    defer w.snapshotMu.Unlock()

    var uncles []*types.Header
    w.current.uncles.Each(func(item interface{}) bool {
        hash, ok := item.(common.Hash)
        if !ok {
            return false
        }
        uncle, exist := w.possibleUncles[hash]
        if !exist {
            return false
        }
        uncles = append(uncles, uncle.Header())
        return false
    })

    w.snapshotBlock = types.NewBlock(
        w.current.header,
        w.current.txs,
        uncles,
        w.current.receipts,
    )

    w.snapshotState = w.current.state.Copy()
}

func (w *worker) commitTransaction(tx *types.Transaction, coinbase common.Address) ([]*types.Log, error) {
    snap := w.current.state.Snapshot()

    receipt, _, err := core.ApplyTransaction(w.config, w.chain, &coinbase, w.current.gasPool, w.current.state, w.current.header, tx, &w.current.header.GasUsed, vm.Config{})
    if err != nil {
        w.current.state.RevertToSnapshot(snap)
        return nil, err
    }
    w.current.txs = append(w.current.txs, tx)
    w.current.receipts = append(w.current.receipts, receipt)

    return receipt.Logs, nil
}

func (w *worker) commitTransactions(txs *types.TransactionsByPriceAndNonce, coinbase common.Address, interrupt *int32) bool {
    // Short circuit if current is nil
    if w.current == nil {
        return true
    }

    if w.current.gasPool == nil {
        w.current.gasPool = new(core.GasPool).AddGas(w.current.header.GasLimit)
    }

    var coalescedLogs []*types.Log

    for {
        // In the following three cases, we will interrupt the execution of the transaction.
        // (1) new head block event arrival, the interrupt signal is 1
        // (2) worker start or restart, the interrupt signal is 1
        // (3) worker recreate the mining block with any newly arrived transactions, the interrupt signal is 2.
        // For the first two cases, the semi-finished work will be discarded.
        // For the third case, the semi-finished work will be submitted to the consensus engine.
        if interrupt != nil && atomic.LoadInt32(interrupt) != commitInterruptNone {
            // Notify resubmit loop to increase resubmitting interval due to too frequent commits.
            if atomic.LoadInt32(interrupt) == commitInterruptResubmit {
                ratio := float64(w.current.header.GasLimit-w.current.gasPool.Gas()) / float64(w.current.header.GasLimit)
                if ratio < 0.1 {
                    ratio = 0.1
                }
                w.resubmitAdjustCh <- &intervalAdjust{
                    ratio: ratio,
                    inc:   true,
                }
            }
            return atomic.LoadInt32(interrupt) == commitInterruptNewHead
        }
        // If we don't have enough gas for any further transactions then we're done
        if w.current.gasPool.Gas() < params.TxGas {
            log.Trace("Not enough gas for further transactions", "have", w.current.gasPool, "want", params.TxGas)
            break
        }
        // Retrieve the next transaction and abort if all done
        tx := txs.Peek()
        if tx == nil {
            break
        }
        // Error may be ignored here. The error has already been checked
        // during transaction acceptance is the transaction pool.
        //
        // We use the eip155 signer regardless of the current hf.
        from, _ := types.Sender(w.current.signer, tx)
        // Check whether the tx is replay protected. If we're not in the EIP155 hf
        // phase, start ignoring the sender until we do.
        if tx.Protected() && !w.config.IsEIP155(w.current.header.Number) {
            log.Trace("Ignoring reply protected transaction", "hash", tx.Hash(), "eip155", w.config.EIP155Block)

            txs.Pop()
            continue
        }
        // Start executing the transaction
        w.current.state.Prepare(tx.Hash(), common.Hash{}, w.current.tcount)

        logs, err := w.commitTransaction(tx, coinbase)
        switch err {
        case core.ErrGasLimitReached:
            // Pop the current out-of-gas transaction without shifting in the next from the account
            log.Trace("Gas limit exceeded for current block", "sender", from)
            txs.Pop()

        case core.ErrNonceTooLow:
            // New head notification data race between the transaction pool and miner, shift
            log.Trace("Skipping transaction with low nonce", "sender", from, "nonce", tx.Nonce())
            txs.Shift()

        case core.ErrNonceTooHigh:
            // Reorg notification data race between the transaction pool and miner, skip account =
            log.Trace("Skipping account with hight nonce", "sender", from, "nonce", tx.Nonce())
            txs.Pop()

        case nil:
            // Everything ok, collect the logs and shift in the next transaction from the same account
            coalescedLogs = append(coalescedLogs, logs...)
            w.current.tcount++
            txs.Shift()

        default:
            // Strange error, discard the transaction and get the next in line (note, the
            // nonce-too-high clause will prevent us from executing in vain).
            log.Debug("Transaction failed, account skipped", "hash", tx.Hash(), "err", err)
            txs.Shift()
        }
    }

    if !w.isRunning() && len(coalescedLogs) > 0 {
        // We don't push the pendingLogsEvent while we are mining. The reason is that
        // when we are mining, the worker will regenerate a mining block every 3 seconds.
        // In order to avoid pushing the repeated pendingLog, we disable the pending log pushing.

        // make a copy, the state caches the logs and these logs get "upgraded" from pending to mined
        // logs by filling in the block hash when the block was mined by the local miner. This can
        // cause a race condition if a log was "upgraded" before the PendingLogsEvent is processed.
        cpy := make([]*types.Log, len(coalescedLogs))
        for i, l := range coalescedLogs {
            cpy[i] = new(types.Log)
            *cpy[i] = *l
        }
        go w.mux.Post(core.PendingLogsEvent{Logs: cpy})
    }
    // Notify resubmit loop to decrease resubmitting interval if current interval is larger
    // than the user-specified one.
    if interrupt != nil {
        w.resubmitAdjustCh <- &intervalAdjust{inc: false}
    }
    return false
}

// commitNewWork generates several new sealing tasks based on the parent block.
func (w *worker) commitNewWork(interrupt *int32, noempty bool, timestamp int64) {
    w.mu.RLock()
    defer w.mu.RUnlock()

    tstart := time.Now()
    parent := w.chain.CurrentBlock()

    if parent.Time().Cmp(new(big.Int).SetInt64(timestamp)) >= 0 {
        timestamp = parent.Time().Int64() + 1
    }
    // this will ensure we're not going off too far in the future
    if now := time.Now().Unix(); timestamp > now+1 {
        wait := time.Duration(timestamp-now) * time.Second
        log.Info("Mining too far in the future", "wait", common.PrettyDuration(wait))
        time.Sleep(wait)
    }

    num := parent.Number()
    header := &types.Header{
        ParentHash: parent.Hash(),
        Number:     num.Add(num, common.Big1),
        GasLimit:   core.CalcGasLimit(parent, w.gasFloor, w.gasCeil),
        Extra:      w.extra,
        Time:       big.NewInt(timestamp),
    }
    // Only set the coinbase if our consensus engine is running (avoid spurious block rewards)
    if w.isRunning() {
        if w.coinbase == (common.Address{}) {
            log.Error("Refusing to mine without etherbase")
            return
        }
        header.Coinbase = w.coinbase
    }
    if err := w.engine.Prepare(w.chain, header); err != nil {
        log.Error("Failed to prepare header for mining", "err", err)
        return
    }
    // If we are care about TheDAO hard-fork check whether to override the extra-data or not
    if daoBlock := w.config.DAOForkBlock; daoBlock != nil {
        // Check whether the block is among the fork extra-override range
        limit := new(big.Int).Add(daoBlock, params.DAOForkExtraRange)
        if header.Number.Cmp(daoBlock) >= 0 && header.Number.Cmp(limit) < 0 {
            // Depending whether we support or oppose the fork, override differently
            if w.config.DAOForkSupport {
                header.Extra = common.CopyBytes(params.DAOForkBlockExtra)
            } else if bytes.Equal(header.Extra, params.DAOForkBlockExtra) {
                header.Extra = []byte{} // If miner opposes, don't let it use the reserved extra-data
            }
        }
    }
    // Could potentially happen if starting to mine in an odd state.
    err := w.makeCurrent(parent, header)
    if err != nil {
        log.Error("Failed to create mining context", "err", err)
        return
    }
    // Create the current work task and check any fork transitions needed
    env := w.current
    if w.config.DAOForkSupport && w.config.DAOForkBlock != nil && w.config.DAOForkBlock.Cmp(header.Number) == 0 {
        misc.ApplyDAOHardFork(env.state)
    }
    // Accumulate the uncles for the current block
    for hash, uncle := range w.possibleUncles {
        if uncle.NumberU64()+staleThreshold <= header.Number.Uint64() {
            delete(w.possibleUncles, hash)
        }
    }
    uncles := make([]*types.Header, 0, 2)
    for hash, uncle := range w.possibleUncles {
        if len(uncles) == 2 {
            break
        }
        if err := w.commitUncle(env, uncle.Header()); err != nil {
            log.Trace("Possible uncle rejected", "hash", hash, "reason", err)
        } else {
            log.Debug("Committing new uncle to block", "hash", hash)
            uncles = append(uncles, uncle.Header())
        }
    }

    if !noempty {
        // Create an empty block based on temporary copied state for sealing in advance without waiting block
        // execution finished.
        w.commit(uncles, nil, false, tstart)
    }

    // Fill the block with all available pending transactions.
    pending, err := w.eth.TxPool().Pending()
    if err != nil {
        log.Error("Failed to fetch pending transactions", "err", err)
        return
    }
    // Short circuit if there is no available pending transactions
    if len(pending) == 0 {
        w.updateSnapshot()
        return
    }
    // Split the pending transactions into locals and remotes
    localTxs, remoteTxs := make(map[common.Address]types.Transactions), pending
    for _, account := range w.eth.TxPool().Locals() {
        if txs := remoteTxs[account]; len(txs) > 0 {
            delete(remoteTxs, account)
            localTxs[account] = txs
        }
    }
    if len(localTxs) > 0 {
        txs := types.NewTransactionsByPriceAndNonce(w.current.signer, localTxs)
        if w.commitTransactions(txs, w.coinbase, interrupt) {
            return
        }
    }
    if len(remoteTxs) > 0 {
        txs := types.NewTransactionsByPriceAndNonce(w.current.signer, remoteTxs)
        if w.commitTransactions(txs, w.coinbase, interrupt) {
            return
        }
    }
    w.commit(uncles, w.fullTaskHook, true, tstart)
}

// commit runs any post-transaction state modifications, assembles the final block
// and commits new work if consensus engine is running.
func (w *worker) commit(uncles []*types.Header, interval func(), update bool, start time.Time) error {
    // Deep copy receipts here to avoid interaction between different tasks.
    receipts := make([]*types.Receipt, len(w.current.receipts))
    for i, l := range w.current.receipts {
        receipts[i] = new(types.Receipt)
        *receipts[i] = *l
    }
    s := w.current.state.Copy()
    block, err := w.engine.Finalize(w.chain, w.current.header, s, w.current.txs, uncles, w.current.receipts)
    if err != nil {
        return err
    }
    if w.isRunning() {
        if interval != nil {
            interval()
        }
        select {
        case w.taskCh <- &task{receipts: receipts, state: s, block: block, createdAt: time.Now()}:
            w.unconfirmed.Shift(block.NumberU64() - 1)

            feesWei := new(big.Int)
            for i, tx := range block.Transactions() {
                feesWei.Add(feesWei, new(big.Int).Mul(new(big.Int).SetUint64(receipts[i].GasUsed), tx.GasPrice()))
            }
            feesEth := new(big.Float).Quo(new(big.Float).SetInt(feesWei), new(big.Float).SetInt(big.NewInt(params.Ether)))

            log.Info("Commit new mining work", "number", block.Number(), "sealhash", w.engine.SealHash(block.Header()),
                "uncles", len(uncles), "txs", w.current.tcount, "gas", block.GasUsed(), "fees", feesEth, "elapsed", common.PrettyDuration(time.Since(start)))

        case <-w.exitCh:
            log.Info("Worker has exited")
        }
    }
    if update {
        w.updateSnapshot()
    }
    return nil
}

Appendix A. 协程批注

本附录中用于描述本文件中启动了哪些协程,各自又是通过哪些通道进行消息交互的。同时,对于会被使用到的外部协程也进行了简单的描述。

1. 命名协程

  • 在对象 miner.worker 的构造函数 newWorker() 中启动新的独立协程运行方法 worker.mainLoop(),不妨将此协程称作命名协程 worker.mainLoop()。
  • 在对象 miner.worker 的构造函数 newWorker() 中启动新的独立协程运行方法 worker.newWorkLoop(recommit),不妨将此协程称作命名协程 worker.newWorkLoop()。
  • 在对象 miner.worker 的构造函数 newWorker() 中启动新的独立协程运行方法 worker.resultLoop(),不妨将此协程称作命名协程 worker.resultLoop()。
  • 在对象 miner.worker 的构造函数 newWorker() 中启动新的独立协程运行方法 worker.taskLoop(),不妨将此协程称作命名协程 worker.taskLoop()。

消息在上述四个命名协程中的流转方向:

    1. 命名协程 worker.newWorkLoop() 基于接收到的消息向命名协程 worker.mainLoop() 提交事件 miner.newWorkReq,事件的提交最终是在命名协程 worker.newWorkLoop() 的内置函数 commit() 中完成。
    1. 命名协程 worker.mainLoop() 基于接收到的消息向命名协程 worker.taskLoop() 提交任务 miner.task,任务的提交最终是在命名协程 worker.mainLoop() 调用的方法 worker.commitNewWork() 和方法 worker.commit() 中完成。
    1. 命名协程 worker.taskLoop() 基于接收到的消息向命名协程 worker.resultLoop() 提交已签名区块 types.Block,已签名区块的提交最终是在共识引擎的签名方法 clique.Seal() 的匿名协程中完成。

各命名协程接收消息和发送消息的具体描述:

    1. 命名协程 worker.newWorkLoop() 从通道 worker.startCh 接收驱动 worker 的开始事件 struct{},从通道 worker.chainHeadCh 接收事件 core.ChainHeadEvent,从通道 timer.C 接收事件 time.Time,从通道 worker.resubmitIntervalCh 接收事件 time.Duration,从通道 worker.resubmitAdjustCh 接收事件 intervalAdjust。命名协程 worker.newWorkLoop() 向通道 worker.newWorkCh 发送事件 miner.newWorkReq。
    1. 命名协程 worker.mainLoop() 从通道 worker.newWorkCh 接收事件 miner.newWorkReq,从通道 worker.chainSideCh 接收事件 core.ChainSideEvent,从通道 worker.txsCh 接收事件 core.NewTxsEvent。命名协程 worker.mainLoop() 向通道 worker.taskCh 发送事件 miner.task。
    1. 命名协程 worker.taskLoop() 从通道 worker.taskCh 接收事件 miner.task。命名协程 worker.taskLoop() 通过共识引擎的签名方法 clique.Seal() 最终向通道 worker.resultCh 发送消息 types.Block。
    1. 命名协程 worker.resultLoop() 从通道 worker.resultCh 接收事件 types.Block。命名协程 worker.resultLoop() 通过方法 TypeMux.Post() 将最终的签名区块广播给网络中其它节点,通过 BlockChain.PostChainEvents() 将签名区块及其对应的事件向本地节点的事件订阅者通过 JSON-RPC 的方式发送事件。

2. 匿名协程

  • 在共识引擎的签名方法 Cilque.Seal() 中启动了匿名协程,用于将已签名区块发送给通道 worker.resultCh。
  • 在方法 commitTransactions() 中启动一个独立的匿名协程,将所有得到正常处理的交易产生的日志集合通过方法 TypeMux.Post() 发送给订阅者。方法 commitTransactions() 由命名协程 worker.mainLoop() 调用。

Appendix B. 日志信息

这些日志记录了关键的流程,同时记录了可能的出错原因。

1. 需要重点关注的日志

  • log.Info("Successfully sealed new block", "number", block.Number(), "sealhash", sealhash, "hash", hash, "elapsed", common.PrettyDuration(time.Since(task.createdAt)))
  • log.Trace("Not enough gas for further transactions", "have", w.current.gasPool, "want", params.TxGas)
  • log.Trace("Gas limit exceeded for current block", "sender", from)
  • log.Info("Mining too far in the future", "wait", common.PrettyDuration(wait))
  • log.Error("Refusing to mine without etherbase")
  • log.Error("Failed to prepare header for mining", "err", err)
  • log.Debug("Committing new uncle to block", "hash", hash)
  • log.Info("Commit new mining work", "number", block.Number(), "sealhash", w.engine.SealHash(block.Header()), "uncles", len(uncles), "txs", w.current.tcount, "gas", block.GasUsed(), "fees", feesEth, "elapsed", common.PrettyDuration(time.Since(start)))

2. 其它日志

  • log.Warn("Sanitizing miner recommit interval", "provided", recommit, "updated", minRecommitInterval)
  • log.Warn("Sanitizing miner recommit interval", "provided", interval, "updated", minRecommitInterval)
  • log.Info("Miner recommit interval update", "from", minRecommit, "to", interval)
  • log.Trace("Increase miner recommit interval", "from", before, "to", recommit)
  • log.Trace("Decrease miner recommit interval", "from", before, "to", recommit)
  • log.Warn("Block sealing failed", "err", err)
  • log.Error("Block found but no relative pending task", "number", block.Number(), "sealhash", sealhash, "hash", hash)
  • log.Error("Failed writing block to chain", "err", err)
  • log.Trace("Ignoring reply protected transaction", "hash", tx.Hash(), "eip155", w.config.EIP155Block)
  • log.Trace("Skipping transaction with low nonce", "sender", from, "nonce", tx.Nonce())
  • log.Trace("Skipping account with hight nonce", "sender", from, "nonce", tx.Nonce())
  • log.Debug("Transaction failed, account skipped", "hash", tx.Hash(), "err", err)
  • log.Error("Failed to create mining context", "err", err)
  • log.Trace("Possible uncle rejected", "hash", hash, "reason", err)
  • log.Error("Failed to fetch pending transactions", "err", err)
  • log.Info("Worker has exited")

Appendix C. 总体批注

1. const

定义了挖矿流程相关的一些常数。特别需要注意两个以共识协议相关的常量 miningLogAtDepth 和 staleThreshold,目前都是 7。可以简单地这样理解,对于给定区块,该区块在经过 miningLogAtDepth 个区块之后被整个链确认。

2. type environment struct

定义了数据结构 environment,用于描述当前挖矿所需的环境。

3. type task struct

定义了数据结构 task,用于描述发送给共识引擎进行签名的待签名区块,以及从共识引擎接收的已签名区块。

4. const

定义了中断相关的一些枚举值,用于描述中断信号。

5. type newWorkReq struct

定义了数据结构 newWorkReq,用于描述如何开始一个新任务。任务所需的具体信息包含在当前环境 environment 中。

6. type intervalAdjust struct

定义了数据结构 intervalAdjust,描述重新提交间隔调整所需的参数。同时,需要注意,另外一些参数是通过 timer.Time 定时器提供的。

7. type worker struct

定义了数据结构 worker。对象 worker 是挖矿的主要实现,启动了多个协程来执行独立的逻辑流程:

  • 构建挖矿的当前环境

  • 接收交易

  • 接收已签名区块

  • 提交交易

  • 构建当前正在挖的区块及任务

  • 组装区块头

  • 使用共识引擎设定区块头中的共识相关字段、对整个区块进行最终的签名

  • 将经共识引擎已签名的区块进行广播

  • 构造函数 newWorker() 用于根据给定参数构建 worker。

  • 方法 setEtherbase() 设置用于初始化区块 coinbase 字段的 etherbase。

  • 方法 setExtra() 设置用于初始化区块额外字段的内容。

  • 方法 setRecommitInterval() 更新矿工签名工作重新提交的间隔。

  • 方法 pending() 返回待处理的状态和相应的区块。

  • 方法 pendingBlock() 返回待处理的区块。

  • 方法 start() 采用原子操作将 running 字段置为 1,并触发新工作的提交。

  • 方法 stop() 采用原子操作将 running 字段置为 0。

  • 方法 isRunning() 返回 worker 是否正在运行的指示符。

  • 方法 close() 终止由 worker 维护的所有后台线程。注意 worker 不支持被关闭多次,这是由 Go 语言不允许多次关闭同一个通道决定的。

  • 方法 newWorkLoop() 是一个独立的协程,基于接收到的事件提交新的挖矿工作。不妨将此协程称作命名协程 worker.newWorkLoop()。

  • 方法 mainLoop() 是一个独立的协程,用于根据接收到的事件重新生成签名任务。不妨将此协程称作命名协程 worker.mainLoop()。

  • 方法 taskLoop() 是一个独立的协程,用于从生成器中获取待签名任务,并将它们提交给共识引擎。不妨将此协程称作命名协程 worker.taskLoop()。

  • 方法 resultLoop() 是一个独立的协程,用于处理签名区块的提交和广播,以及更新相关数据到数据库。不妨将此协程称作命名协程 worker.resultLoop()。

  • 方法 makeCurrent() 为当前周期创建新的环境 environment。

  • 方法 commitUncle() 将给定的区块添加至叔区块集合中,如果添加失败则返回错误。

  • 方法 updateSnapshot() 更新待处理区块和状态的快照。注意,此函数确保当前变量是线程安全的。

  • 方法 commitTransactions() 提交交易列表 txs,并附上交易的发起者地址。根据整个交易列表 txs 是否都被有效提交,返回 true 或 false。

  • 方法 commitNewWork() 基于父区块生成几个新的签名任务。

  • 方法 commit() 运行任何交易的后续状态修改,组装最终区块,并在共识引擎运行时提交新工作。

Reference

  1. https://github.com/ethereum/go-ethereum/blob/master/miner/worker.go

Contributor

  1. Windstamp, https://github.com/windstamp

你可能感兴趣的:(Go-ethereum 源码解析之 miner/worker.go (上))