- 【机器学习】广义线性模型(GLM)的基本概念以及广义线性模型在python中的实例(包含statsmodels和scikit-learn实现逻辑回归)
Lossya
机器学习pythonscikit-learn线性回归人工智能逻辑回归
引言GLM扩展了传统的线性回归模型,使其能够处理更复杂的数据类型和分布文章目录引言一、广义线性模型1.1定义1.2广义线性模型的组成1.2.1响应变量(ResponseVariable)1.2.2链接函数(LinkFunction)1.2.3线性预测器(LinearPredictor)1.3常见的广义线性模型1.3.1线性回归1.3.2逻辑回归1.3.3泊松回归1.4GLM的特性1.5广义线性模型
- 多个总体均值的比较(多元方差分析)
亦旧sea
均值算法算法
多元方差分析是什么多元方差分析是一种统计方法,用于比较两个或更多组的均值在一个或多个自变量上的差异是否具有统计学意义。它可以同时考虑多个自变量对因变量的影响,以及自变量之间的交互作用。它是广义线性模型的拓展,适用于因变量为连续变量且自变量为分类变量的情况。多元方差分析可以帮助研究者确定各组之间是否存在显著差异,并评估自变量的影响程度。它常用于社会科学、医学研究等领域中。多元方差分析的原理多元方差分
- Python概率建模算法和图示
亚图跨际
数学机器学习Pythonpython算法概率建模统计
要点Python朴素贝叶斯分类器解释概率学习示例Python概率论,衡量一个或多个变量相互依赖性,从数据中学习概率模型参数,贝叶斯决策论,信息论,线性代数和优化Python线性判别分析分类模型,逻辑回归,线性回归,广义线性模型Python结构化数据,图像和序列神经网络朴素贝叶斯分类器示例概率学习在机器学习的广阔领域中,概率学习开辟了自己独特的空间。在统计和概率的驱动下,概率学习侧重于对数据中存在的
- statsmodels专栏6——专业洞见:Python中的Statsmodels库高级线性模型
theskylife
数据分析数据挖掘python学习之旅python概率论机器学习数据分析数据挖掘
目录写在前面1广义线性模型(GLM)1.1GLM的基本理念1.2使用Statsmodels进行GLM建模1.2.1使用线性回归1.2.2使用logistic回归处理二分类问题2高级线性混合效应模型2.1高级线性混合效应模型的应用场景2.2利用Statsmodels进行高级线性混合效应建模3泊松回归3.1解释泊松回归的应用场景3.2使用Statsmodels进行泊松回归建模写在最后写在前面在当今数据
- 广义线性模型GLM和广义线性混合模型GLMM
奔跑的Forrest
GLM一般是指generalizedlinearmodel,也就是广义线性模型;而非generallinearmodel,也就是一般线性模型;而GLMM(generalizedlinearmixedmodel)是广义线性混合模型。广义线性模型GLM很简单,举个例子,药物的疗效和服用药物的剂量有关。这个相关性可能是多种多样的,可能是简单线性关系(发烧时吃一片药退烧0.1度,两片药退烧0.2度,以此类
- paper1:Wide & Deep Learning for Recommender Systems
是黄小胖呀
论文整理待写:Wide&DeepModels--2018.12.1/12.2两天1、论文创新点广义线性模型存在需要太多特征工程的工作;深度模型的embedding的过度概括化以至于推荐不太相关的物品当用户数据比较稀疏时;提出了一个结合使用了非线性特征的线性模型和一个用来embedding特征的深度学习,并且使用联合训练的方法进行优化。思想是,基于交叉特征的线性模型只能从历史出现过的数据中找到非线性
- Topic 8. 临床预测模型-Lasso回归
90066456ace6
Lasso回归在决定哪些因素可以纳入模型提高模型的稳健性,以及相应的给出各种可用图表,在做生物标志物筛选时,效果非常好!我们从最简单的线性回归(LinearRegression)开始了解如何使用glmnet拟合LASSO回归模型,所以此时的连接函数(linkfunction)就是恒等,或者说没有连接函数,而误差的函数分布是正态分布。01Lasso回归概念——————用惩罚极大似然拟合广义线性模型。
- 前出深入-机器学习
代码浪人
机器学习机器学习python人工智能
文章目录一、K近邻算法1.1先画一个散列图1.2使用K最近算法建模拟合数据1.3进行预测1.4K最近邻算法处理多元分类问题1.5K最近邻算法用于回归分析1.6K最近邻算法项目实战-酒的分类1.6.1对数据进行分析1.6.2生成训练数据集和测试数据集1.6.3使用K最近邻算法对数据进行建模预测1.6.4对新数据进行分类二、广义线性模型2.1线性模型的一般公式2.2通过数据集绘制2.2.1查看系数和截
- Topic 4. 临床预测模型构建 Logistic 回归
90066456ace6
上期我们已经基本了解变量的类型,以及如果处理不同种类的变量,现在我们就来学些一个临床预测模型--GLM广义线性模型及R语言实现。广义线性模型(GeneralizedLinearModel)是一般线性模型的推广,它使因变量的总体均值通过一个非线性连接函数而依赖于线性预测值,允许响应概率分布为指数分布族中的任何一员。许多广泛应用的统计模型都属于广义线性模型,如常用于研究二元分类响应变量的Logisti
- 机器学习-04 基于sklearn 广义线性模型- Lasso回归
布比与迈克大炮
sklearnpython机器学习
机器学习-04基于sklearn广义线性模型-Lasso回归Lasso回归坐标下降算法官方手册示例再现重要代码解释Lasso回归稀疏系数是指含零较多的系数。这种现象的产生可能是特征值设定的原因,比如性别男性为1女性为0,或者天气晴天为1阴天为0,这种非黑及白的选择如果有很多,可能会产生一溜零的情况。百度百科上面这段话写的特别好,特地摘抄在下面“该方法是一种压缩估计。它通过构造一个惩罚函数得到一个较
- 分类方法之逻辑回归
亦旧sea
分类逻辑回归数据挖掘
什么是逻辑回归逻辑回归是一种用于解决分类问题的统计分析方法。它是一种广义线性模型,主要用于预测一个事件的概率。逻辑回归通过将输入变量和权重进行线性组合,并通过一个特殊的函数(称为逻辑函数或Sigmoid函数)将结果转化为0到1之间的概率值。这个概率值可以表示在给定输入变量的情况下,事件发生的可能性。逻辑回归可以用于二分类问题,也可以通过一些扩展方法用于多分类问题。在二分类问题中,逻辑回归将输出为两
- 多元线性回归模型(公式推导+举例应用)
Nie同学
机器学习线性回归算法回归
文章目录引言模型表达式均方误差和优化目标最小二乘法广义线性模型范数XTX\mathbf{X^TX}XTX不是满秩情况下,回归问题的解决方案岭回归套索回归弹性网络回归(ElasticNet)XTX\mathbf{X^TX}XTX不是满秩情况下,二分类问题的解决方案对数几率回归黑塞矩阵结论实验分析(一)实验分析(二)实验分析(三)引言多元线性回归是回归分析中的一种复杂模型,它考虑了多个输入变量对输出变
- 对数几率回归
LoveToday2020
对数几率回归是利用广义线性模型解决二分类任务的一种方法。对数几率回归简称对率回归,是使用Sigmoid函数作为联系函数时的广义线性模型,是广义线性模型的一个特例。对于一个线性回归的模型我们一般都会定义为为了做一个二分类的估计我们可以做一个概率的判断单位阶跃函数但是单位阶跃函数是不连续的,难以求导,所以用对数几率函数替代此函数最为一个激活函数在二分类的问题上简直是完美,此函数的特征sigmoid函数
- R语言广义线性模型:Logistic回归模型的亚组分析及森林图绘制
大笑编程
r语言回归开发语言
R语言广义线性模型:Logistic回归模型的亚组分析及森林图绘制Logistic回归模型是一种常用的广义线性模型,广泛应用于分类问题。亚组分析则是在Logistic回归模型基础上进行的一种统计方法,用于探究某个特定因素对不同亚组之间的影响是否存在差异。本文将介绍如何使用R语言进行Logistic回归模型的亚组分析,并使用森林图来可视化结果。在开始之前,首先需要安装并加载必要的R软件包。以下代码将
- Python实现广义线性回归模型(statsmodels GLM算法)项目实战
胖哥真不错
机器学习pythonpythonFA萤火虫优化算法机器学习广义线性回归模型GLM回归模型
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景广义线性模型(GeneralizedLinearModel,简称GLM)是一种广泛应用于回归分析和分类问题的统计模型。它将线性模型与非线性变换相结合,可以适应各种类型的数据。本项目通过GLM回归算法来构建广义线性回归模型。2.数据获取本次建模数据来源于网络(本项目撰写
- 斯坦福机器学习 Lecture5 (判别学习算法、GDA 高斯判别分析,skip)
shimly123456
斯坦福机器学习机器学习人工智能
讲解GDA(高斯判别分析)目前我们学习的所有学习算法(线性回归和逻辑回归和广义线性模型)被称为判别学习算法(discriminative)今天要讲生成学习算法TODO:here
- 使用car包进行R语言分析
技术闯荡
r语言开发语言
使用car包进行R语言分析在R语言中,car(CompaniontoAppliedRegression)包是一个强大的统计分析工具,提供了许多用于线性和广义线性模型的实用函数。本文将介绍car包的一些常用功能,并结合相应的源代码进行演示。一、安装和加载car包要使用car包,首先需要安装它。在R控制台中输入以下代码来安装car包:install.packages("car")安装完成后,可以使用以
- 【机器学习】线性模型之逻辑回归
撕得失败的标签
机器学习机器学习逻辑回归人工智能
文章目录逻辑回归Sigmoid函数概率输出结果预测值与真实标签之间的并不匹配交叉熵逻辑回归模型梯度下降逻辑回归模型求解编程求解sklearn实现,并查看拟合指标逻辑回归逻辑回归是一种广义线性模型,形式上引入了SigmoidSigmoidSigmoid函数映射,是非线性模型。但本质上,逻辑回归仍然是一个线性回归模型,因为除去SigmoidSigmoidSigmoid映射函数关系,其他的步骤和算法都是
- 知识补给站20230419-20230421
Charming&M
人工智能大数据python学习方法
文章目录1.FTP定价2.BP3.XGB中的SHAP4.其他格式转数据框5.树模型当中的增益是怎么计算的?6.plt作图小结?7.解决样本不平衡问题?8.缺失值填充9.周期损失的计算方法?10.贷款五级分类11.B端业务和C端业务(参考人人都是产品经理的文章)12.欺诈检测-多分类13.过拟合14.广义线性模型15.经验风险+结构风险16.极大似然估计-求最优参数17.逻辑回归18.混淆矩阵19.
- 无标题文章
joeyqzhou
>Byjoey周琦本文将首先简单介绍指数族分布,然后介绍一下广义线性模型(generalizedlinearmodel,GLM),最后解释了为什么逻辑回归(logisticregression,LR)是广义线性模型的一种。#指数族分布指数族分布(Theexponentialfamilydistribution),区别于指数分布(exponentialdistribution)。在概率统计中,若某概
- 广义线性模型(GLM):理论与Scikit-Learn的实现
数据派THU
scikit-learnpython机器学习人工智能
来源:我得学城本文约3600字,建议阅读5分钟本文介绍了理解GLM所需的细节。广义线性模型(GLM)是统计学中的一种模型框架,用于建立和分析多种类型的回归模型,其中因变量不一定需要满足线性关系或正态分布的假设。GLM扩展了传统的线性回归,通过引入链接函数和允许不同的分布,从而更灵活地适用于不同类型的数据。文章来源:https://towardsdatascience.com/scikit
- 【收藏】时间序列预测入门必读的4篇论文
深度学习技术前沿
算法机器学习人工智能深度学习大数据
时间序列预测是一个发展历史悠久的技术领域,近些年随着机器学习算法和深度学习算法的应用,时间序列预测方法在越来越多的传统领域焕发光彩。入门必读的4篇论文见文末↓01传统统计学算法和ML/DL算法的优劣时间序列预测常用的传统的统计学算法有ARIMA,ETS,GARCH等,常用的机器学习算法和深度学习算法有广义线性模型、xgboost、LSTM、CNN、Transformer等。统计学习方法需要结合时序
- R中的统计模型
weixin_30718391
数据结构与算法大数据
R中的统计模型这一部分假定读者已经对统计方法,特别是回归分析和方差分析有一定的了解。后面我们还会假定读者对广义线性模型和非线性模型也有所了解。R已经很好地定义了统计模型拟合中的一些前提条件,因此我们能构建出一些通用的方法以用于各种问题。R提供了一系列紧密联系的统计模型拟合的工具,使得拟合工作变得简单。正如我们在绪论中提到的一样,基本的屏幕输出是简洁的,因此用户需要调用一些辅助函数来提取细节的结果信
- R语言|广义相加模型(GAM)
小易学统计
转自个人微信公粽号【易学统计】的统计学习笔记:R软件:广义相加模型(GAM)01解决何种问题前面一期和大家分享如何运用样条回归处理遇到的非线性问题,但这适合处理单个因变量Y对应一个自变量X的问题,而现实情况是,我们常常要处理多个自变量和一个因变量之间的关系,除此以外,虽然通过做散点图能发现非线性关系,但很难归属它的形式,广义线性模型中的多项式回归,由于其不好解释的系数,降低了模型实用性。因此本章分
- autoReg:三线表格及森林图
皮肤科大白
mr
首先致敬前辈科研行者介绍一下最近的新宠「autoReg包」,不仅可以快捷完成基线表的制作,还可以直接一行代码输出回归分析(支持线性模型、广义线性模型和比例风险模型)的表格,我们还是以上次的示例数据来做演示。安装并加载需要用的R包install.packages("devtools")install.packages("remotes)#如果devtools包是旧有的,可能需要更新,否则有可能报错l
- python 机器学习写作_"深入浅出Python机器学习" 学习笔记-6
weixin_39710041
python机器学习写作
第四章广义线性模型-"耿直"的算法模型这章主要介绍了线性模型,怎么模拟直线,线性回归,岭回归,Lasso(套索)回归.不过这本书都不怎么讲数学,原理基本不讲.没有讲出线性回归,岭回归,Lasso回归的本质差异,需要额外补充资料学习.这章主要用到sklearn.linear_model模块:linear_model模块4.1线性模型的基本模型线性模型一般预测公式:ŷ=w0+∑i=1~n(xi*wi
- 【深度学习】基于MindSpore和pytorch的Softmax回归及前馈神经网络
WiIsonEdwards
深度学习回归神经网络
1实验内容简介1.1实验目的(1)熟练掌握tensor相关各种操作;(2)掌握广义线性回归模型(logistic模型、sofmax模型)、前馈神经网络模型的原理;(3)熟练掌握基于mindspore和pytorch的广义线性模型与前馈神经网络模型的实现。1.2实验内容及要求请基于mindspore和pytorch平台实现对MNIST数据集的分类分析,并以分类的准确度和混淆矩阵为衡量指标,分析二个模
- 风险风控-逻辑回归理论基础
田晖扬
风控建模逻辑回归算法机器学习
逻辑回归一般都应用于传统的建模方案,因其模型含义易解释,容易推广上线而得到大家的青睐逻辑回归于广义线性模型:逻辑回归是广义线性模型(GeneralizedLinearModels,GLM)的一种特殊形式。广义线性模型是线性回归模型的推广,它不强行改变数据的自然度量,允许数据具有非线性和非恒定方差结构。具体来说,GLM建立了响应变量的数学期望值与线性组合的预测变量之间的关系,通过链接函数将这两者联系
- 这是一个小“废”贴
壮壮不太胖^QwQ
算法数据库决策树机器学习sql
我的学习目录一,数据处理Pandas数据处理二,机器学习上课进度及练习应用部分生成自己的数据集广义线性模型交叉验证:评估估算器的表现计算f1_score数据降维特征选择集成学习1,k-邻近算法2,线性回归3,决策树4,朴素贝叶斯算法5,逻辑回归6,聚类-sklearn中的使用三,深度学习(tensorflow)相关知识1,构建多层感知器2,独热编码、顺序编码与softMax多分类3,模型的优化和过
- 《利用Python进行数据分析》13.3statsmodels介绍
CCC考研
第十三章Python建模库介绍13.3statsmodels介绍statsmodels(http://www.statsmodels.org)是一个Python库,用于拟合多种统计模型,执行统计测试以及数据探索和可视化。statsmodels包含更多的“经典”频率学派统计方法,而贝叶斯方法和机器学习模型可在其他库中找到。包含在statsmodels中的一些模型:·线性模型,广义线性模型和鲁棒线性模
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =