洛谷 P4568 [JLOI2011]飞行路线
题目链接:洛谷 P4568 [JLOI2011]飞行路线
算法标签: 图论
,最短路
题目
题目描述
Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司。该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的价格。
Alice和Bob现在要从一个城市沿着航线到达另一个城市,途中可以进行转机。航空公司对他们这次旅行也推出优惠,他们可以免费在最多k种航线上搭乘飞机。那么Alice和Bob这次出行最少花费多少?
输入格式
数据的第一行有三个整数,n,m,k,分别表示城市数,航线数和免费乘坐次数。
第二行有两个整数,s,t,分别表示他们出行的起点城市编号和终点城市编号。
接下来有m行,每行三个整数,a,b,c,表示存在一种航线,能从城市a到达城市b,或从城市b到达城市a,价格为c。
输出格式
只有一行,包含一个整数,为最少花费。
输入输出样例
输入 #1
5 6 1
0 4
0 1 5
1 2 5
2 3 5
3 4 5
2 3 3
0 2 100
输出 #1
8
说明/提示
对于30%的数据,\(2 \le n \le 50,1 \le m \le 300,k=0;\)
对于50%的数据,\(2 \le n \le 600,1 \le m \le 6000,0 \le k \le 1;\)
对于100%的数据,\(2 \le n \le 10000,1 \le m \le 50000,0 \le k \le 10,0 \le s,t
题解:
分层图最短路
思路就是建一个\(K\)层的图(平面内开k倍),之后按照加边规则把每条边在k层平面内都加好,之后同样的两个点在相邻层中建一条边权为\(0\)的边,这样构成了所给的\(K\)条免费的路径。
分层图加边代码(链式前向星):
for (int i = 1; i <= m; i ++ )
{
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
add(x ,y, z);
add(y, x, z);
for (int j = 1; j <= k; j ++ )
{
add(x + (j - 1) * n, y + j * n, 0);
add(y + (j - 1) * n, x + j * n, 0);
add(x + j * n, y + j * n, z);
add(y + j * n, x + j * n, z);
}
}
不过这道题有大坑!!!
首先的确给了我们K个免费机会,但是我们不确定最优解是否一定用光了这K次机会(例如说最优解边数 其次是在这道题中的数据,数组要开……估算40倍!!!首先因为是分层图,并且每一条边都是双相边,这里数组一定要够大!!!!!(本蒟蒻在这里被疯狂卡)AC代码
#include