HIT_2715
这个题目和HIT_2543比较像,每个点有两种性质,走第一次的时候会花费w,后面再走花费就会变为0。于是不妨将一个点拆成两个点,并连两条边,一条为容量为1花费为w的边,另一条为容量为INF花费为0的边。再将其余的边连好之后做最大费用最大流即可,由于题目限制行走过程中不会出现环,所以就不必担心有正圈了。
#include<stdio.h> #include<string.h> #include<algorithm> #define MAXN 50 #define MAXD 5010 #define MAXM 35010 #define INF 0x3f3f3f3f #define NINF 0xc3c3c3c3 int N, K, h[MAXN][MAXN], first[MAXD], e, next[MAXM], u[MAXM], v[MAXM], flow[MAXM], cost[MAXM]; int S, T, q[MAXD], dis[MAXD], pre[MAXD], inq[MAXD]; const int Q = 2500; int dx[] = {-1, 1, 0, 0}, dy[] = {0, 0, -1, 1}; void add(int x, int y, int f, int c) { u[e] = x, v[e] = y, flow[e] = f, cost[e] = c; next[e] = first[x], first[x] = e ++; } void init() { int i, j, k, ni, nj, x, y, nx, w; scanf("%d%d", &N, &K); S = 0, T = N * N * 2 + 1; memset(first, -1, sizeof(first[0]) * (T + 1)), e = 0; for(i = 1; i <= N; i ++) for(j = 1; j <= N; j ++) { x = (i - 1) * N + j, y = N * N + x; scanf("%d", &w); add(x, y, 1, w), add(y, x, 0, -w), add(x, y, INF, 0), add(y, x, 0, 0); } for(i = 1; i <= N; i ++) for(j = 1; j <= N; j ++) scanf("%d", &h[i][j]); for(i = 1; i <= N; i ++) for(j = 1; j <= N; j ++) { x = (i - 1) * N + j, y = N * N + x; add(S, x, INF, 0), add(x, S, 0, 0); if(i == 1 || i == N || j == 1 || j == N) add(y, T, INF, 0), add(T, y, 0, 0); for(k = 0; k < 4; k ++) { ni = i + dx[k], nj = j + dy[k]; if(ni >= 1 && ni <= N && nj >= 1 && nj <= N && h[ni][nj] < h[i][j]) { nx = (ni - 1) * N + nj; add(y, nx, INF, 0), add(nx, y, 0, 0); } } } } int bfs() { int i, x, front, rear; front = rear = 0; memset(dis, 0xc3, sizeof(dis[0]) * (T + 1)); dis[S] = 0, pre[S] = -1, q[rear ++] = S; memset(inq, 0, sizeof(inq[0]) * (T + 1)); while(front != rear) { x = q[front ++], inq[x] = 0; front > Q ? front = 0 : 0; for(i = first[x]; i != -1; i = next[i]) if(flow[i] && dis[x] + cost[i] > dis[v[i]]) { dis[v[i]] = dis[x] + cost[i], pre[v[i]] = i; if(!inq[v[i]]) { q[rear ++] = v[i], inq[v[i]] = 1; rear > Q ? rear = 0 : 0; } } } return dis[T] != NINF; } void solve() { int i, j, c = 0, a, cnt = 0; while((++ cnt) <= K && bfs()) { for(i = pre[T], a = INF; i != -1; i = pre[u[i]]) a = std::min(a, flow[i]); if(a > 1) break; for(i = pre[T]; i != -1; i = pre[u[i]]) flow[i] -= a, flow[i ^ 1] += a; c += dis[T]; } printf("%d\n", c); } int main() { int t; scanf("%d", &t); while(t --) { init(); solve(); } return 0; }