- 【大模型】AI 辅助编程操作实战使用详解
小码农叔叔
AI大模型实战与应用AI辅助编程操作实战使用详解AI辅助编程AI编程使用详解AI编程AI代码编程
目录一、前言二、AI编程介绍2.1AI编程是什么2.1.1为什么需要AI辅助编程2.2AI编程主要特点2.3AI编程底层核心技术2.4AI编程核心应用场景三、AI代码辅助编程解决方案3.1AI大模型平台3.1.1AI大模型平台代码生成优缺点3.2AI编码插件3.3AI编码工具产品CursorAITabnineGitHubCopilot通义灵码MarsCodeCodeGeeX腾讯云AI代码助手Ope
- 什么是重绘?什么是回流?如何减少回流?
Ashy-
前端面试题前端笔记css3
重绘是指当元素样式发生改变,但不影响其布局的情况下,浏览器重新绘制元素的过程。例如修改元素的背景色、字体颜色等回流是指元素布局属性发生改变,需要重新计算元素在页面中的布局位置时,浏览器重新进行布局的过程例如元素的宽度高度位置改变如何减少回流?适用css动画代替JavaScript动画css动画利用GPU加速,在性能方面通常比JavaScript动画更高效。使用css的transform和opaci
- AIMv2:多模态自回归预训练的视觉新突破
人工智能
AIMv2:多模态自回归预训练的视觉新突破阅读时长:19分钟发布时间:2025-02-17近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】导言视觉模型在人工智能领域的地位愈发重要,从图像识别、目标检测到多模态理解,其应用场景不断拓展。在大规模数据集上进行预训练,能助力模型学习丰富的视觉特
- HarmonyOS SDK,助力开发者打造焕然一新的鸿蒙原生应用
harmonyos
鸿蒙生态千帆启航仪式于1月18日正式启动。从2019年HarmonyOS正式发布到2020年“没有人能够熄灭漫天星光”,今天,满天星光终汇成璀璨星河,HarmonyOSNEXT鸿蒙星河版重磅发布,带来了全新架构、全新体验、全新生态。作为支撑鸿蒙原生应用开发的技术源动力,HarmonyOSSDK将系统级能力全面对外开放,覆盖了应用框架、应用服务、系统、媒体、图形、AI六大领域的开发能力,为开发者带来
- Node.js 环境搭建指南(手动下载并安装Node.js)
MAX_WT
node.js服务器javascript
在服务器上部署Node.js环境是开发全栈应用、运行JavaScript服务端代码的基础步骤。本文将详细介绍如何在Linux服务器上搭建Node.js环境,并验证其是否正常运行。本文适合初学者和有一定经验的开发者参考。一、服务器环境准备1.添加GitHubHosts由于某些网络环境下访问GitHub可能较慢或不稳定,我们可以通过修改/etc/hosts文件来加速访问。操作步骤:1.使用vi编辑器打
- AI 发展的第一驱动力:人才引领变革
倔强的小石头_
热点时事人工智能
在科技蓬勃发展的当下,AI成为了时代的焦点,然而其发展并非一帆风顺,究竟什么才是推动AI持续前行的关键力量呢?目录AI发展现状剖析期望与现实的落差落地困境根源人才:AI发展的核心动力编辑技术突破的引领者行业融合的推动者人才驱动下的AI多元赋能创新应用场景加速产业升级培育AI人才的战略路径教育体系革新企业人才战略AI发展现状剖析期望与现实的落差近年来,全球科技大厂纷纷将目光聚焦于人工智能领域,对其寄
- 供应链协作中的文件安全风险,企业如何防范数据泄露?
够快云库
企业数据安全企业文件安全
2025年,全球供应链正加速数字化转型,大量企业通过云平台、协作工具与供应商共享订单、合同、设计文件等关键数据。然而,超过65%的企业在与供应商协作时遭遇过数据泄露问题,供应链成为企业文件安全的“短板”。典型案例:2025年2月,一家全球知名汽车制造商在与外包厂商共享电池供应链数据时,因安全协议漏洞,导致核心设计方案外泄,竞争对手迅速推出相似产品,直接造成3亿美元的损失。在供应链协作过程中,企业机
- RK3588+昇腾AI|40TOPS算力AI盒子设计方案
ARM+FPGA+AI工业主板定制专家
AI盒子瑞芯微人工智能
综合视频智能AI分析系统介绍以计算机视觉技术为基础,AI赋能千行百业,依托人工智能视觉分析技术以及强大的“端+边”算力支撑,实时分析烟火,入侵等事件,同时结合云上预警业务平台,实现事件发现、预警、处置全流程闭环。设计架构系统架构视频智能识别系统自下而上分为“感知层、网络层、支撑层、应用层”四层,系统逻辑架构如下图所示:感知层对接前端感知设备,如视频监控、NVR、和其他物联感知设备,对重要通道和场所
- Java基于Java的酒店管理系统的设计与实现(开题+源码)
笔文程序设计
java开发语言
本系统(程序+源码)带文档lw万字以上文末可获取一份本项目的java源码和数据库参考。系统程序文件列表开题报告内容研究背景:随着科技的发展和信息化的加速,酒店管理系统已经成为酒店运营不可或缺的一部分。过去,酒店通常采用传统的手动方式来管理客户信息、客房预订和入住登记等,这种方式不仅效率低下,而且容易出错。为了提高酒店的运营效率和服务质量,我们需要设计并实现一个基于Java的酒店管理系统。意义:通过
- 运维脚本——3.自动化部署
F——
运维运维物联网人工智能学习web安全自动化边缘计算
自动化部署是现代IT运维和开发中的关键实践,能够显著提升效率、减少错误并加速交付流程。必要性提高效率:自动化部署能够快速、一致地完成部署任务,减少手动操作的时间和精力。减少人为错误:自动化流程减少了人为干预,降低了因手动操作导致的错误风险。加速交付:通过自动化部署,可以更快地将新功能和修复推送到生产环境,缩短交付周期。增强一致性:自动化部署确保每次部署的环境和配置一致,避免了“在我机器上能运行”的
- APO v0.7.0 更新:日志功能完整版发布!
日志后端
在v0.6.0版本中,APO发布了基于ClickHouse开箱即用的高效日志方案,为用户提供了采集、处理和检索全量日志的基础功能。新版本在此基础上进一步强化了日志处理和检索的能力,提升了用户体验。支持为不同日志设置不同的解析规则,提取出关键信息并加速检索日志中往往存在许多关键信息,将这些关键信息提取出来能够针对性的检索数据,通过分析此类关键信息能够发现平时难以注意到的洞察。通常不同的应用在输出日志
- 量子计算机:未来科技革命的引擎
百态老人
人工智能笔记
量子计算机的基本概念和优势量子计算机是一种遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。与传统计算机相比,量子计算机的主要优势在于其使用量子比特(qubit)作为信息处理的基本单位,能够同时处于多个状态的叠加,以及量子比特之间的纠缠现象,这使得量子计算机在处理某些特定问题时具有潜在的指数级加速能力。量子计算机的计算基础是量子比特,它通过量子态的演化进行信息的传递与加工。量子
- 阿里云EMAS超级App助力Agmo电动车超级应用程序发布
阿里云解决方案app
近日,阿里云宣布与马来西亚本土数字方案专家Agmo控股(AgmoHoldingsBerhad,简称Agmo)展开合作,签署谅解备忘录,联手推出马来西亚首个Agmo电动车超级应用程序。此次合作也标志着阿里云在中国以外的市场首次落地其最新的企业级超级App解决方案(EMAS超级App)。EMAS超级App解决方案是一个用于建构超级应用程序和相关生态系统的全栈平台,也是阿里云在电子商务行业和可扩展云基础
- 阿里云EMAS:2月产品动态
阿里云移动应用开发测试推送
一、内容摘要上线EMAS定制版套餐,适合有多种移动研发工具诉求的中型企业Windvane小程序容器新增列表搜索功能云构建发布新的android镜像java-11-base,适应gradle7.0+移动测试上线一键重跑功能,支持失败的用例一键重跑移动推送支持Flutter插件,开源更易用二、产品动态
- 人工智能的发展领域之GPU加速计算的应用概述、架构介绍与教学过程
m0_74824592
面试学习路线阿里巴巴人工智能架构
文章目录一、架构介绍GPU算力平台概述优势与特点二、注册与登录账号注册流程GPU服务器类型配置选择指南内存和存储容量网络带宽CPU配置三、创建实例实例创建步骤镜像选择与设置四、连接实例SSH连接方法远程桌面配置一、架构介绍GPU算力平台概述一个专注于GPU加速计算的专业云服务平台,隶属于软件和信息技术服务业。主要面向高校、科研机构和企业用户。该平台提供多种NVIDIAGPU选择,适用于机器学习、人
- 机器学习 - 学习线性模型的重要性
谦亨有终
跟着AI向前走机器学习学习人工智能
在接下来的博文中,我们将重点学习线性模型的回归模型和分类模型,在学习之前,让我们来了解一下学习线性模型的重要性,以及如何入门学习。一、作为初学者如何学习线性模型?作为初学者,要高效学习机器学习以及其中的线性模型,可以遵循以下几个步骤和建议:(一)、机器学习的整体学习策略打好数学基础线性代数:理解向量、矩阵、线性变换等,这些是理解模型表示(如y=w^Tx+b)和算法优化的基础。微积分:掌握导数、梯度
- 递归消除特征法RFE筛选特征-包装法-特征选择-特征降维
糯米君_
预处理机器学习python人工智能
RFE(Recursivefeatureelimination):递归消除特征法使用一个基模型(这里使用逻辑回归)来进行多轮训练,每轮训练后,消除若干权值系数的特征,再基于新的特征集进行下一轮训练。RFE的具体步骤如下:1、初始的特征集为所有可用的特征。2、使用当前特征集进行建模,然后计算每个特征的重要性。3、删除最不重要的一个(或多个)特征,更新特征集。4、跳转到步骤2,直到完成所有特征的重要性
- 【机器学习】多元线性回归
T0uken
Python全栈开发1024程序员节机器学习算法线性回归
在实际应用中,许多问题都包含多个特征(输入变量),而不仅仅是单个输入变量。多元线性回归是线性回归的扩展,它能够处理多个输入特征并建立它们与目标变量的线性关系。本教程将系统性推演多元线性回归,包括向量化处理、特征放缩、梯度下降的收敛性和学习率选择等,并使用numpy实现。最后,我们会通过sklearn快速实现多元线性回归模型。多元线性回归模型简介多元线性回归的模型公式为:y=X⋅w+by=X\cdo
- 【第15章:量子深度学习与未来趋势—15.1 量子计算基础与量子机器学习的发展背景】
再见孙悟空_
#【深度学习・探索智能核心奥秘】机器翻译自然语言处理计算机视觉量子计算人工智能深度学习机器学习
想象一下,你正在用ChatGPT生成一篇小说,突然它卡在"主角穿越虫洞"的情节上——这不是因为想象力枯竭,而是传统计算机的晶体管已经烧到冒烟。当前AI大模型的参数规模每4个月翻一番,但摩尔定律的终结让经典计算机的算力增长首次跟不上AI的进化速度。这时候,量子计算带着它的"超能力"登场了:1台50量子位的量子计算机,处理某些问题的速度可达超级计算机的1亿倍。这场算力革命,正在改写深度学习的游戏规则。
- 使用bitnamiredis-sentinel部署Redis 哨兵模式
m0_67265654
面试学习路线阿里巴巴sentinelredis数据库
使用bitnami/redis-sentinel部署Redis哨兵模式为什么使用Bitnami镜像?Bitnami密切跟踪上游源代码更改,并使用我们的自动化系统及时发布此镜像的新版本。借助Bitnami镜像,可以尽快提供最新的错误修复和功能。Bitnami容器、虚拟机和云镜像使用相同的组件和配置方法-可以根据你的项目需求轻松切换格式。我们所有的镜像都基于minideb,这是一个基于Debian的极
- Lua 5.1 参考手册
weixin_30822451
Lua5.1参考手册byRobertoIerusalimschy,LuizHenriquedeFigueiredo,WaldemarCeles云风译www.codingnow.comCopyright©2006Lua.org,PUC-Rio.Allrightsreserved.1-介绍Lua是一个扩展式程序设计语言,它被设计成支持通用的过程式编程,并有相关数据描述的设施。Lua也能对面向对象编程,
- app,waf笔记
qq_45981247
笔记
API攻防知识点:1、HTTP接口类-测评2、RPC类接口-测评3、WebService类-测评内容点:SOAP(SimpleObjectAccessProtocol)简单对象访问协议是交换数据的一种协议规范,是一种轻量级的、简单的、基于XML(标准通用标记语言下的一个子集)的协议,它被设计成在WEB上交换结构化的和固化的信息。SOAP部署WebService的专有协议。SOAP使用HTTP来发送
- Python随机森林算法详解与案例实现
闲人编程
python算法python随机森林数据分析人工智能
目录Python随机森林算法详解与案例实现1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1数据集介绍4.2代码实现4.3代码解释4.4运行结果5、回归案例:使用随机森林预测波士顿房价5.1数据集介绍5.2代码实现5.3代码解释5.4运行结果6、随机森林的优缺点7、改进方向8、应用场景9、总结Python随机森林算法详解与案例实现1、随机森林算法概述随
- 本地部署model scope魔搭大模型流程
CQller
python算法深度学习机器学习jupyterpytorch
一、安装python二、安装Gradio三、添加镜像加速四、运行字符串倒叙五、运行绘图六、安装常用软件包和库七、我目前使用的软件包和库简介八、文字生成图片AI模型九、文字回复AI模型一、安装python可参考安装步骤:python学习笔记-python安装与环境变量配置_python环境变量-CSDN博客二、安装Gradio在cmd执行以下命令。Gradio封装了功能丰富的前端用户界面,一会儿用来
- springboot项目配置https
愿企鹅飞(。ò ∀ ó。)
Javajavatomcatjarspringeclipse
1,必须去服务商购买一个ssl证书。2,以我想的是这个域名的8080端口当前端,8070当后端,3,前端配置简单直接去下载nginx证书把里面的key和证书粘到对应位置即可(用宝塔简单)4.springboot后端服务(下载Tomcat证书)按照这个方法https://blog.csdn.net/baidu_37302589/article/details/100692957配置端口配置成我需要的
- matlab 延迟算子,时间序列分析-----2---时间序列预处理
这块必被安排
matlab延迟算子
既然有了序列,那怎么拿来分析呢?时间序列分析方法分为描述性时序分析和统计时序分析。1、描述性时序分析通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析。描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。2、统计时序分析(1)频域分析方法原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动发展过程:1)早期的频
- ARIMA差分自回归移动平均模型--时间序列预测
别团等shy哥发育
数据挖掘与机器学习回归python数据挖掘时间序列分析机器学习
ARIMA差分自回归移动平均模型1、ARIMA模型理论基础2、ARIMA建模步骤3、ARIMA建模实战3.1导入模块3.2加载数据3.3平稳性检验3.4单位根检验3.4白噪声检验3.5模型定阶3.6参数估计3.7模型的显著性检验3.8模型预测3.8模型拟合效果展示参考文献论文:文章:1、ARIMA模型理论基础 ARIMA是差分自回归移动平均模型的引文缩写,其中AR表示的是自回归模型,MA表示的是
- 解决linux中pip速度过慢问题
江城闲鹤
linuxpippython
在Linux系统下,如果你发现使用pip下载Python库时速度非常慢,可以考虑以下几种方法来加速下载:使用pip的-i选项:如果你只想临时使用其他镜像,可以在安装时加上-i选项:pipinstallpackage_name-ihttps://mirrors.aliyun.com/pypi/simple/
- 【论文精读】MotionLM
EEPI
自动驾驶深度学习论文阅读
【论文精读】MotionLM1背景2存在的问题3具体方案轨迹转运动序列模型轨迹去重和聚类loss1背景团队:Waymo时间:2023.9代码:简介:采用自回归的方式做轨迹生成,能够更好地建模交互,且避免模态坍缩,在数据集达到了SOTA。2存在的问题轨迹回归方面:原本xy预测认为空间过大,有的xy很大(t大速度快的时候),有的xy很小(t小速度慢的时候)。3具体方案Encoder采用了之前的论文Wa
- ADS基础教程1 - 软件简介
RunningCamel
ADS仿真嵌入式硬件
1.ADS软件简介ADS是一款Kesight研制的先进设计系统软件,加速设计和仿真工作流程。该软件特点是为设计人员提供了针对特定设计流程预先配置好的软件组合。这些软件套件能够为设计师们提供多达三种不同的仿真技术——系统仿真、电路仿真和电磁(EM)仿真,帮助他们设计通信系统、GaAsMMIC、RFIC、射频系统封装(SiP)、射频电路板和信号完整性等产品。PathWaveADS软件套件包含W3600
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文