交叉熵

作者:Noriko Oshima

链接:https://www.zhihu.com/question/41252833/answer/108777563

来源:知乎

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

熵的本质是香农信息量(

)的期望。

现有关于样本集的2个概率分布p和q,其中p为真实分布,q非真实分布。按照真实分布p来衡量识别一个样本的所需要的编码长度的期望(即平均编码长度)为:H(p)=

。如果使用错误分布q来表示来自真实分布p的平均编码长度,则应该是:H(p,q)=

。因为用q来编码的样本来自分布p,所以期望H(p,q)中概率是p(i)。H(p,q)我们称之为“交叉熵”。

比如含有4个字母(A,B,C,D)的数据集中,真实分布p=(1/2, 1/2, 0, 0),即A和B出现的概率均为1/2,C和D出现的概率都为0。计算H(p)为1,即只需要1位编码即可识别A和B。如果使用分布Q=(1/4, 1/4, 1/4, 1/4)来编码则得到H(p,q)=2,即需要2位编码来识别A和B(当然还有C和D,尽管C和D并不会出现,因为真实分布p中C和D出现的概率为0,这里就钦定概率为0的事件不会发生啦)。

可以看到上例中根据非真实分布q得到的平均编码长度H(p,q)大于根据真实分布p得到的平均编码长度H(p)。事实上,根据Gibbs' inequality可知,H(p,q)>=H(p)恒成立,当q为真实分布p时取等号。我们将由q得到的平均编码长度比由p得到的平均编码长度多出的bit数称为“相对熵”:D(p||q)=H(p,q)-H(p)=

,其又被称为KL散度(Kullback–Leibler divergence,KLD)Kullback–Leibler divergence。它表示2个函数或概率分布的差异性:差异越大则相对熵越大,差异越小则相对熵越小,特别地,若2者相同则熵为0。注意,KL散度的非对称性。

比如TD-IDF算法就可以理解为相对熵的应用:词频在整个语料库的分布与词频在具体文档中分布之间的差异性。

交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量p与q的相似性。交叉熵作为损失函数还有一个好处是使用sigmoid函数在梯度下降时能避免均方误差损失函数学习速率降低的问题,因为学习速率可以被输出的误差所控制。

PS:通常“相对熵”也可称为“交叉熵”,因为真实分布p是固定的,D(p||q)由H(p,q)决定。当然也有特殊情况,彼时2者须区别对待。

你可能感兴趣的:(交叉熵)