- Codeforces Round 969 (Div. 2) C. Dora and C++ (裴蜀定理)
致碑前繁花
刷题记录c语言c++开发语言
什么?竟然是裴蜀定理。。。由于这里给出了a和b两个数,我们或许可以想到使用同样是需要给出两个定值的裴蜀定理,即:如果给定xxx和yyy,那么一定有ax+by=gcd(x,y)ax+by=gcd(x,y)ax+by=gcd(x,y)。所以在这时候我们就可以让输入的所有数都去对gcd(a,b)gcd(a,b)gcd(a,b)取模,这样就能够得到所有数的最简形式(可以当成是让所有数尽可能消去aaa和bb
- 偏偏是个煽情雨季
TX故事
从小到大,没经历过什么大起大落,一切都被安排得妥当。遇见深邃的人,继而平平淡淡,幼稚地为了和某人一样,近了视,继而迷迷糊糊。今天人手一部手机,就算戴好眼镜瞪大眼睛,各种原则定理还是听不下去,究竟美好的东西会不会反噬我?想写写文看看字,画好蓝图,离开条条框框,摆脱“不值得定律”里的一人一物,可责任心也得保留住。这一秒钟,注定只能放空,下雨天,操的心总是重一点,窗外雾气重,路面滑,各个人健康与安全都重
- (凸集)表示定理
流星落黑光
表示定理设为非空多面集,则有:(1)极点集非空,且存在有限个极点(2)极方向集合为空集的充要条件是S有界,若S无界,则存在有限个极方向(3)的充要条件是:证明略。解释:*1:对一个有限多面体的表面,并不需要极方向(极方向只存在与无限情况!),显然任意一个表面上的点都在某个平面上,可由这个平面的端点(即有限个极点)表示。对一个无限多面体表面,若一个点在一个无限大的面上,这个无限大的面也可由有限条线段
- 【机器学习】朴素贝叶斯
可口的冰可乐
机器学习机器学习概率论
3.朴素贝叶斯素贝叶斯算法(NaiveBayes)是一种基于贝叶斯定理的简单而有效的分类算法。其“朴素”之处在于假设各特征之间相互独立,即在给定类别的条件下,各个特征是独立的。尽管这一假设在实际中不一定成立,合理的平滑技术和数据预处理仍能使其在许多任务中表现良好。优点:速度快:由于朴素贝叶斯仅需计算简单的概率,训练和预测的速度非常快。适用于高维数据:即使在特征数量多的情况下,朴素贝叶斯仍然表现良好
- 学习二十大报告精神,做新时代青年。
梁亮亮
党的二十大是在全党全国各族人民全面建成社会主义现代化国家新征程、进入第二个百年奋斗目标的关键时刻召开的一次重要会议,对于党和国家发展史来说具有重要里程碑意义。青年强则国家强,作为新时代的青年,我们要坚定不移听党话跟党走,立志做有理想、敢担当、能吃苦、能奋斗的新时代好青年,就是要牢记“四个意识”、坚定理想信念。“总开关”上不怕下尖子,“总闸门”上不留空间;一个人能成长为一名合格建设者,其实就是站在共
- 【C语言】素数的判断方法----多方法详细分析
gugugu.
C/C++开发语言c语言开发语言
前言素数的判断方法是我们在写程序的过程中经常碰到的问题,今天给大家带来素数的一些判断方法。一、什么是素数?质数(primenumber)又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数;否则称为合数。根据算术基本定理,每一个比1大的整数,要么本身是一个质数,要么可以写成一系列质数的乘积;而且如果不考虑这些质数在乘积中
- 【04】深度学习——训练的常见问题 | 过拟合欠拟合应对策略 | 过拟合欠拟合示例 | 正则化 | Dropout方法 | Dropout的代码实现 | 梯度消失和爆炸 | 模型文件的读写
花落指尖❀
#深度学习深度学习人工智能目标检测神经网络cnn
深度学习1.常见的分类问题1.1模型架构设计1.2万能近似定理1.3宽度or深度1.4过拟合问题1.5欠拟合问题1.6相互关系2.过拟合欠拟合应对策略2.1问题的本源2.2数据集大小的选择2.3数据增广2.4使用验证集2.5模型选择2.6K折交叉验证2.7提前终止3.过拟合欠拟合示例3.1导入库3.2数据生成3.3数据划分3.4模型定义3.5辅助函数3.6可视化4.正则化4.1深度学习中的正则化4
- 金融三定理
学生行之
Timevalueofmoney资金的聚集风险——保险:让社会分担分散个体的风险风险——股票:让更多人“利益共享,风险共担”风险——风投、创投:让社会分担创业创新风险明白:a时间的价值是切切实实可以看的到!b银行低利率吸收存款,国家发行债券,做基础建设c个人幼年,青年,壮年,老年如何配置资产抵御不同时期的风险!
- 赏析微课堂之达达主义(一)
鼎典美育卷卷老师
鼎典理念:让孩子拥有发现美和独立思考的品质。图片发自App2018.12.25今日赏析微课堂分享~达达艺术1916~1924年在欧美许多城市兴起的一种虚无主义艺术运动。是战后欧洲一些年轻的艺术家厌倦战争、彷徨、失望以及在艺术上否定理性和传统文化、崇拜虚无主义的精神产物。其创作方法主要通过照片剪接或与纸片、抹布拼贴,去追求艺术表现的偶然性。作品怪诞奇特,令人惊惑不解。法国画家马塞尔·杜尚是达达主义的
- 2021-10-03
心心向善
南无羌佛《世法哲言》浅释(二十四)慧海之库与物质之仓是为反量也,慧库无为转无量,多用之反增之。物仓储存乃无常,施之减之,故无为乃大,大在无量,无常乃微,微在消然。如果把人的智慧聪明的储藏境比做一个仓库的话,那么它与储存物质的仓库恰是相对的反量。智慧聪明的仓库属於无为转无量,即以无为的定理转无量的境界,所起的作用的是越用就越多,也就是说,一个人的才智聪明,是越用越聪明,越锻炼反应力就越快,越进步、聪
- 4.3万字详解PHP+RabbitMQ(AMQP协议、通讯架构、6大模式、交换机队列消息持久化、死信队列、延时队列、消息丢失、重复消费、消息应答、消息应答、发布确认、故障转移、不公平分发、优先级、等)
小松聊PHP进阶
laravelPHPphp架构服务器中间件后端laravelrabbitmq
理论(后半部分有实操详解)哲学思考易经思维:向各国人讲述一种动物叫乌龟,要学很久的各国语言,但是随手画一个乌龟,全世界的人都能看得懂。道家思维:努力没有用(指劳神费心的机械性重复、肢体受累、刻意行为),要用心(深度思考、去感悟、透过现象看本质)才有用。举例:类似中学做不出来的几何题的底层原理:不是不知道xx定理或公式(招式),而是不知道画辅助线的思路(内功)。总结:万事万物、用道家思维思考本质与规
- 着力建设一支德才兼备的高质量干部队伍
dc7bce189fd7
党章对加强党的执政能力建设提出了明确要求,党的执政能力的提高,党的建设的加强,关键在党的干部素质的提高上,也就是要有一支善于治国理政的高素质干部队伍。干部队伍的素质如何,对于保持党的先进性,提高党的执政能力,做好各项工作,具有决定性的意义。坚定理想信念,是好干部第一位的标准,以习近平新时代中国特色社会主义思想为指引,在思想认识上毫不动摇坚定道路、理论、制度、文化自信,在政治实践中一以贯之拥护党的领
- 践行青春誓言 建功立业新时代
玉面狐狸在偷塔
入职半月以来,逐渐适应了乡镇基层的工作调性,结合专业所学谈谈我对选调生身份的几点体会。一是,“选”之于党,选调生意味着要信念坚定,对党忠诚。作为从万千考生中选拔出的年轻力量,选调生不能辜负党和人民的期望,要信念坚定、对党忠诚,时刻坚持用党的理论武装头脑、补足精神之钙。习近平总书记曾说:“年轻干部要牢记,坚定理想信念是终身课题,需要常修常炼,要信一辈子,守一辈子。”作为党选出来的青年力量中的一员,我
- 坚定理想信念,锤炼党性修养
知涵知
理想信念是中国共产党人的政治灵魂,是共产党人精神上的“钙”,没有理想信念,理想信念不坚定,精神上就会“缺钙”,就会得“软骨病”。党员干部只有坚定理想信念,强化责任担当,锤炼道德操守,提升党性修养,才能切实做到为党分忧、为国尽责、为民奉献。坚定理想信念,就要强化学习精神、自律精神、担当精神。思想理论上的坚定清醒是政治上坚定的前提,党员干部要始终把理论学习作为政治责任、事业需要和精神追求,积极参加组织
- (扩展)中国剩余定理(模板)
UniverseofHK
数学(扩展)中国剩余定理模板
中国剩余定理:猜数字求解下列同余方程组(模数互质){x≡a1(modm1)x≡a2(modm2)⋮x≡an(modmn)\begin{cases}x\equiva_1\(\mod\m_1\)\\x\equiva_2\(\mod\m_2\)\\\quad\vdots\\x\equiva_n\(\mod\m_n)\end{cases}⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧x≡a1(modm1)x≡a2(modm2)⋮
- 洛谷 P4777 【模板】扩展中国剩余定理(EXCRT)
qq_38232157
noi后缀数组扩展中国剩余定理
1、中国剩余定理(n条同余式子,前提是m[1]~m[n]两两互质)x=r[1](modm[1])x=r[1](modm[2])…x=r[n](modm[n])2、扩展中国剩余定理(n条同余式子,m[1]~m[n]不一定两两互质)x=r[1](modm[1])x=r[1](modm[2])…x=r[n](modm[n])考虑签名两条方程,x=r[1](modm[1]),x=r[1](modm[2])
- 洛谷 P1495 【模板】中国剩余定理(CRT)/曹冲养猪(中国剩余定理)
qq_38232157
洛谷数论
中国剩余定理概念:设m[1],m[2],m[3],…,m[[n]是两两互质的整数。方程组x=a[1](modm[1])//注意,这里的'='表示同余符号x=a[2](modm[2])...x=a[n](modm[n])方程的解x=sum{a[i]*(m/m[i])*t[i]}(1#include#includeusingnamespacestd;constintMaxN=1e5+10;typede
- HDU 1573X问题(扩展中国剩余定理)
数学收藏家
数据结构算法
ProblemDescription求在小于等于N的正整数中有多少个X满足:Xmoda[0]=b[0],Xmoda[1]=b[1],Xmoda[2]=b[2],…,Xmoda[i]=b[i],…(0usingnamespacestd;#defineintlonglong#defineendl'\n'#defineIOSios::sync_with_stdio(false);cin.tie(0);c
- 如何在Java中实现高效的分布式系统:从CAP定理到最终一致性
省赚客app开发者
java开发语言
如何在Java中实现高效的分布式系统:从CAP定理到最终一致性大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天我们来探讨如何在Java中实现高效的分布式系统,从CAP定理的基础概念到最终一致性的实现策略。一、CAP定理的基础概念CAP定理是分布式系统设计中的基本理论,它指出,在一个分布式系统中,无法同时完全满足一致性(Consistency)、可用性(Availa
- SAP项目管理第二章-方法论实践
syounger
SAP项目管理制造
《SAP项目管理基础与实践》书籍第二章来啦!本章主要是讨论项目管理方法论在实际项目中的实践经验,介绍了SAPActivate中非常有用的文档,并且也探讨了由格力高事件引申的项目质量管理。第二章目录:第2章专题一:SAP项目管理方法论和三角定理2.1项目管理方法论实践2.1.1SAPActivate项目管理方法论路线图2.1.2不同类型项目的方法论实践2.1.3敏捷在SAP项目中的应用2.2三角定理
- 《跳着踢踏舞去上班》书摘和点评
禅堂听雨
跳着踢踏舞去上班卡萝尔·卢米斯这是一本描写巴菲特经历和投资理念的书。有不少经典概念定理。07巴菲特的信(有好的资产也得熬得住,不要跳槽去别的快船,结果发现自己那条慢船突然加速成快艇了)>>格雷厄姆和巴菲特并非在所有问题上都保持一致,但他们共同的观念就是:如果以非常低的价格购进某种资产,假以时日,基本上都能获得回报。08你能跑赢股市吗(节选)(我个人觉得市场大多数时候有效,因为资金是最聪明的。但是乌
- 抽象代数精解【2】
叶绿先锋
基础数学与应用数学抽象代数人工智能
文章目录群消去律的意义消去律与群的其他性质总结难点与例子例子参考文献群下面由文心一言生成群中的消去律是群论中的一个基本定理,它描述了群中元素之间的一种特殊关系。具体来说,群中的消去律包含左右两个方向,可以表述为:左消去律:若(ab=ac)(ab=ac)(ab=ac)且(a,b,c∈G)(a,b,c\inG)(a,b,c∈G)其中(G)是一个群,则b=c。右消去律:若(ba=ca)(ba=ca)(b
- 【机器学习】朴素贝叶斯方法的概率图表示以及贝叶斯统计中的共轭先验方法
Lossya
机器学习概率论人工智能朴素贝叶斯共轭先验
引言朴素贝叶斯方法是一种基于贝叶斯定理的简单概率模型,它假设特征之间相互独立。文章目录引言一、朴素贝叶斯方法的概率图表示1.1节点表示1.2边表示1.3无其他连接1.4总结二、朴素贝叶斯的应用场景2.1文本分类2.2推荐系统2.3医疗诊断2.4欺诈检测2.5情感分析2.6邮件过滤2.7信息检索2.8生物信息学三、朴素贝叶斯的优点四、朴素贝叶斯的局限性4.1特征独立性假设4.2敏感于输入数据的表示4
- 青年干部筑牢理想信念根基
夕阳醉year
习近平总书记指出:“年轻干部接好班,最重要的是接好坚持马克思主义信仰、为共产主义远大理想和中国特色社会主义共同理想而奋斗的班。”“坚定理想信念不是一阵子而是一辈子的事,要常修常炼、常悟常进,无论顺境逆境都坚贞不渝,经得起大浪淘沙的考验。”习近平总书记的重要论述,深刻揭示了理想信念的极端重要性,精辟阐明了年轻干部成长为对党和人民忠诚可靠、堪当时代重任栋梁之才的努力方向和实践路径。坚持理论联系实际。列
- KAN网络技术最全解析——最热KAN能否干掉MLP和Transformer?(收录于GPT-4/ChatGPT技术与产业分析)
u013250861
#LLM/Transformertransformerchatgpt深度学习
KAN网络结构思路来自Kolmogorov-Arnold表示定理。MLP在节点(“神经元”)上具有固定的激活函数,而KAN在边(“权重”)上具有可学习的激活函数。在数据拟合和PDE求解中,较小的KAN可以比较大的MLP获得更好的准确性。相对MLP,KAN也具备更好的可解释性,适合作为数学和物理研究中的辅助模型,帮助发现和寻找更基础的数值规律。(点赞是我们分享的动力)MLP与KAN对比与传统的MLP
- Java 7.1 - 理论 & 算法 & 协议
没有韭菜的饺子
java开发语言
什么是CAP理论?C:Consistency一致性A:Availability可用性P:Partition分区容错性对于理论计算机科学,CAP定理指出,对于一个分布式系统而言,CAP中的三个只能同时满足两个。分区容错性:分布式系统出现网络分区的时候,仍然可以向外提供服务。*网络分区分布式系统中,多个节点之间的网络本来是相连的。但现在因为某些原因,某些节点之间不再连通,网络会被分成多个区域,这就叫网
- 心理学效应系列|取法乎上,得乎其中——吉格勒定理
熙桓心理
吉格勒定理是由美国行为学家J·吉格勒提出的。设定一个高目标就等于达到了目标的一部分。如果从一开始就怀有高远的目标,就会呈现出与众不同的眼界,逐渐形成良好的工作习惯和方法,让每一步都朝着正确的方向前进。气魄大方可成大,起点高才能至高。美国伯利恒钢铁公司的创建者齐瓦勃出生在乡村,所受的教育水平也很低。18岁那年,齐瓦勃到钢铁大王卡内基所属的一个建筑工地打工。一踏进建筑工地,齐瓦勃就抱定了要做同事中最优
- 什么是奈奎斯特采样定理
达西西66
奈奎斯特采样定理
奈奎斯特采样定理,也被称为奈奎斯特定理或奈氏定理,是信号处理领域中至关重要的原理之一。它揭示了在数字信号处理中如何正确地采样模拟信号,以避免信息丢失和混叠现象。本文将深入探讨奈奎斯特采样定理的原理、应用和实例,以及其在通信、音频处理和图像处理等领域的重要性。奈奎斯特采样定理的基本原理奈奎斯特采样定理是由美国工程师哈里·S·奈奎斯特(HarryNyquist)在20世纪20年代提出的。该定理的核心思
- 人工智能与机器学习原理精解【17】
叶绿先锋
基础数学与应用数学人工智能机器学习概率论
文章目录贝叶斯贝叶斯定理的公式推导一、条件概率的定义二、联合概率的分解三、贝叶斯定理的推导四、全概率公式的应用五、总结全概率公式推导一、全概率公式的定义二、全概率公式的推导三、全概率公式的应用贝叶斯定理的原理一、基本原理二、核心概念三、数学表达式四、原理应用五、原理特点朴素贝叶斯定理一、贝叶斯定理基础二、朴素贝叶斯的原理三、朴素贝叶斯的特点朴素贝叶斯公式一、贝叶斯定理二、特征独立性假设三、朴素贝叶
- 数论学习1(欧几里德算法+唯一分解定理+埃氏筛+拓展欧几里德+同余与模算术)
new出新对象!
数学数算法学习
目录1.唯一分解定理2.欧几里德算法(求最大公约数)3.求最小公倍数4.埃氏筛5.拓展欧几里德算法(1)证明一下线性方程组的正数的最小值是多少,(2)如何通过裴蜀定理退出拓展欧几里得算法(贝祖定理)6.同余与模算术(1)取模运算操作加法取模运算减法取模运算乘法取模运算(2)特殊的取模操作大整数取模幂取模(3)同余式,乘法逆元,费马小定理今天也是小小的开始学习数论方面的知识了,首先数论的入门章节必然
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那