- 【机器学习】必会降维算法之:奇异值分解(SVD)
Carl_奕然
机器学习算法人工智能
奇异值分解(SVD)1、引言2、奇异值分解(SVD)2.1定义2.2应用场景2.3核心原理2.4算法公式2.5代码示例3、总结1、引言一转眼,小屌丝:鱼哥,就要到每年最开心的节日了:六一儿童节。小鱼:你有啥想法?小屌丝:想法没有,玩的地方倒是想小鱼:拉倒吧,我可不去小屌丝:确定?小鱼:看情况。小屌丝:嘿嘿,难得过节日,我们也得放松一下小鱼:正有此意。2、奇异值分解(SVD)2.1定义奇异值分解(S
- 使用SVD将图像压缩四分之一(MATLAB)
superdont
matlab开发语言
SVD压缩前后数据量减少的原因在于,通过奇异值分解(SVD),我们将原始数据(如图像)转换成了一种更加紧凑的表示形式。这种转换依赖于数据内部的结构和相关性,以及数据中信息的不均匀分布。让我们简单分析一下这个过程为何能减少所需的数据量:数据的结构和相关性高度相关的数据:图像数据往往包含大量的空间相关性,即图像中相邻的像素点在颜色和亮度上通常非常接近。这种高度的相关性意味着原始图像可以通过更少的信息来
- 【图像压缩】奇异值分解SVD灰色图像压缩(可设置压缩比)【含Matlab源码 4358期】
Matlab武动乾坤
Matlab图像处理(进阶版)matlab
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。个人主页:海神之光代码获取方式:海神之光Matlab王者学习之路—代码获取方式⛳️座右铭:行百里者,半于九十。更多Matlab仿真内容点击Matlab图像处理(进阶版)路径规划(Matlab)神经网络预测与分类(Matlab)优化求解(Matlab)语音处理(Matlab)信号处理(Matlab)车间调度
- 【Python机器学习】NLP词频背后的含义——隐性语义分析
zhangbin_237
Python机器学习python机器学习自然语言处理人工智能开发语言
隐性语义分析基于最古老和最常用的降维技术——奇异值分解(SVD)。SVD将一个矩阵分解成3个方阵,其中一个是对角矩阵。SVD的一个应用是求逆矩阵。一个矩阵可以分解成3个最简单的方阵,然后对这些方阵求转置后再把它们相乘,就得到了原始矩阵的逆矩阵。它为我们提供了一个对大型复杂矩阵求逆的捷径。SVD适用于桁架结构的应力和应变分析等机械工程问题,它对电气工程中的电路分析也很有用,它甚至在数据科学中被用于基
- 深度学习100问7-向量降维的算法有那些
不断持续学习ing
深度学习机器学习人工智能
一、主成分分析(PCA)PCA就像你整理一堆考试成绩单。假如成绩单上有好多科目成绩,这就像一个高维向量。但有些科目成绩关系很紧密,比如数学好的同学一般物理也不错,化学也还行。那PCA就会找这些成绩单里最主要的特点,把关系近的科目合成几个新的“大科目”。这样就把原来很多科目的高维向量变成几个“大科目”的低维向量啦。二、奇异值分解(SVD)SVD呢,就好比你有一本很厚的书。书的每一页上的字可以看成一个
- 主成分分析(PCA)附Python实现
不染53
数学建模数学建模python算法
主成分分析矩阵分解特征值和特征向量特征值分解奇异值分解主成分分析(PCA)Python实现主成分分析方法(PrincipalComponentAnalysis,PCA)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,将多个变量压缩为少数几个综合指标(称为主成分),是一种使用最广泛的数据降维算法。此外,由于主成分分析独特的性质,压缩之后的主成分之间线性无关,因此
- 第2章 线性代数
His Last Bow
#深度学习线性代数机器学习深度学习人工智能算法
目录1.标量、向量、矩阵和张量2.矩阵和向量相乘3.单位矩阵和逆矩阵4.线性相关和生成子空间5.范数6.特殊类型的矩阵和向量7.特征分解8.奇异值分解9.Moore-Penrose伪逆10.迹运算11.行列式1.标量、向量、矩阵和张量标量(scalar):数向量(vector):一列数x=[x1x2...xn]x=\begin{bmatrix}x_1\\x_2\\.\\.\\.\\x_n\end{
- 164基于matlab的奇异值分解、小波降噪、zoom细化
顶呱呱程序
matlab工程应用matlab开发语言zoom细化小波降噪奇异值分解
基于matlab的奇异值分解、小波降噪、zoom细化。程序已调通,可直接运行。164奇异值分解小波降噪zoom细化(xiaohongshu.com)
- 机器学习入门--奇异值分解原理与实践
Dr.Cup
机器学习入门机器学习人工智能
奇异值分解奇异值分解(SingularValueDecomposition,SVD)是一种矩阵分解技术,可以将一个矩阵分解为三个部分的乘积。在SVD中,原始矩阵被分解为左奇异向量矩阵、奇异值矩阵和右奇异向量矩阵的乘积。奇异值分解数学原理奇异值分解是一种矩阵分解技术,可以将一个矩阵分解为三个部分的乘积。在SVD中,原始矩阵被分解为左奇异向量矩阵、奇异值矩阵和右奇异向量矩阵的乘积。具体来说,对于一个m
- SVD奇异值分解
jjm2002
机器学习人工智能
一、奇异值奇异值(SingularValues)是线性代数中矩阵的重要性质之一,与奇异值分解(SVD)密切相关。让我们来更详细地了解一下奇异值的概念:定义:对于一个矩阵(A),它的奇异值是矩阵(A)的奇异值分解()中对角矩阵()的对角线元素的非负实数平方根。换句话说,如果(A)是一个大小为()的矩阵,那么它有()个奇异值。几何解释:奇异值可以被视为矩阵在变换过程中每个方向的缩放因子。在奇异值分解中
- 数据处理方法—— 7 种数据降维操作 !!
JOYCE_Leo16
Python数据降维python数据处理
文章目录数据降维1.主成分分析(PCA)2.线性判别分析(LDA)3.t-分布随机邻域嵌入(t-SNE)4.局部线性嵌入(LLE)5.多维缩放(MDS)6.奇异值分解(SVD)7.自动编码器(Autoencoders)总结数据降维数据降维是一种将高维数据转换为低纬数据的技术,同时尽量保留原始数据的重要信息。这对于处理大规模数据集非常有用,因为它有助于减少计算资源的需要,并提高算法的效率。以下是一些
- 每天一个数据分析题(一百五十六)
紫色沙
数据分析题库数据分析数据挖掘
在数据建模过程中,对于变量的筛选与维度归约,以下哪项描述是正确的?A.主成分分析适用于可解释性较强的预测模型,因为它减少了变量间的相关性。B.变量聚类旨在通过保留所有变量来减少信息损失,适合于所有类型的数据模型。C.因子分析通常不适用于预测类模型,因为它更侧重于变量的可解释性而非预测准确性。D.奇异值分解专门用于方阵数据的维度归约,不适用于非方阵情况。题目来源于CDA模拟题库点击此处获取答案
- Matlab图像处理——基于小波变换的数字图像水印嵌入和提取算法(GUI界面)
MatpyMaster
图像处理付费专栏算法人工智能计算机视觉
1.摘要数字图像水印技术在信息安全领域中扮演着至关重要的角色,本文结合离散小波变换、Arnold置乱变换和奇异值分解,实现了对数字图像水印的高效嵌入和提取。结果表明:该算法能够准确实现水印的嵌入和提取功能;嵌入的水印具有良好的隐身性,人眼不能感觉出水印嵌入带来的变化;算法具有较强的鲁棒性,经过椒盐噪声、高斯噪声、JPEG压缩、高斯平滑和裁剪操作等污染及攻击后,都能较好地恢复水印信息。2.研究方法算
- Moore-Penrose 伪逆与 Hadamard 乘积
ALGORITHM LOL
python
1.1Moore-Penrose伪逆Moore-Penrose伪逆Moore-Penrose伪逆是一种矩阵的广义逆,通常用于处理矩阵不可逆或奇异的情况。给定一个矩阵A,其Moore-Penrose伪逆通常表示为A⁺。计算方法计算Moore-Penrose伪逆的一种常见方法是使用奇异值分解(SingularValueDecomposition,SVD)。假设A是一个大小为m×n的矩阵,其SVD为A=
- LSA 主题模型
dreampai
1、原理通过对大量的文本集进行统计分析,从中提取出词语的上下文使用含义。技术上通过SVD分解等处理,消除了同义词、多义词的影响,提高了后续处理的精度。分析文档集合,建立词汇-文本矩阵。对词汇-文本矩阵进行奇异值分解。对SVD分解后的矩阵进行降维使用降维后的矩阵构建潜在语义空间image.png第一个小矩阵X是对词进行分类的一个结果,它的每一行表示一个词,每一列表示一个语义相近的词类,这一行中每个非
- 【MATLAB】 SSA奇异谱分析信号分解算法
Lwcah
MATLAB信号分解算法matlab算法开发语言
有意向获取代码,请转文末观看代码获取方式~1基本定义SSA奇异谱分析(SingularSpectrumAnalysis)是一种处理非线性时间序列数据的方法,可以对时间序列进行分析和预测。它基于构造在时间序列上的特定矩阵的奇异值分解(SVD),可以从一个时间序列中分解出趋势、振荡分量和噪声。具体流程如下:根据原始时间序列构建轨迹矩阵XXX。对矩阵X进行奇异值分解:X=∑i=1rσiUiViTX=\s
- 【数学和算法】SVD奇异值分解原理、以及在PCA中的运用
Mister Zhu
数学和算法数学
详细的介绍请参考这篇博客:SVD奇异值分解SVD奇异值分解是用来对矩阵进行分解,并不是专门用来求解特征值和特征向量。而求解特征值和求解特征向量,可以选择使用SVD算法进行矩阵分解后,再用矩阵分解后的结果得到特征值和特征向量。我们先回顾一下SVD:PCA降维需要求解协方差矩阵的特征值和特征向量,而求解协方差矩阵1m∗X∗XT\color{blue}\frac{1}{m}*X*X^Tm1∗X∗XT的特
- MIT_线性代数笔记:第 29 讲 奇异值分解
浊酒南街
MIT_线性代数笔记线性代数笔记
目录如何实现用矩阵数学语言描述这一过程举例本讲介绍奇异值分解(Singularvaluedecomposition),简称SVD。这是矩阵最终也是最好的分解,任意矩阵可分解为A=UΣVTA=UΣV^TA=UΣVT,分解结果为正交矩阵U,对角阵Σ和正交矩阵V。如果矩阵A是正定矩阵,它的奇异值分解就是A=QΛQTA=QΛQ^TA=QΛQT,一个正交矩阵Q就可以满足分解,而不需要两个。而对于可对角化的矩
- MATLAB环境下基于多分辨奇异值分解和改进完备集成经验模态分解的大地电磁数据降噪方法
哥廷根数学学派
小波分析信号处理图像处理matlab算法开发语言
大地电磁测深法(MT)诞生于20世纪50年代,是一种以天然交变电磁场为场源,通过测量地表相互正交的电场和磁场,获得地下电性结构信息的地球物理方法。与有源的电磁勘探方法相比,天然大地电磁场频带范围宽且本身信号极其微弱,野外观测到的大地电磁信号不可避免地会受到各种噪声的污染。尤其是在矿集区,随处可见的高压电网、广播电台、通讯电缆、信号发射塔、各种金属管网以及用于矿山开采的大功率直流电机车等严重影响了实
- MIT_线性代数笔记:第 28 讲 相似矩阵和若尔当标准型
浊酒南街
MIT_线性代数笔记线性代数笔记
目录正定矩阵ATAA^TAATA相似矩阵Similarmatrices特征值互不相同Distincteigenvalues重特征值Repeatedeigenvalues若尔当标准型Jordanform本讲介绍相似矩阵,这些内容以及奇异值分解是线性代数最核心的概念。正定矩阵ATAA^TAATA若矩阵A满足对任意向量x≠0均有xTAx>0x^TAx>0xTAx>0,则称矩阵为正定矩阵,可以通过特征值、
- 数学建模day17-SVD和图形处理
WenJGo
数学建模数学建模
注:本文源于数学建模学习交流相关公众号观看学习视频后所作奇异值分解(SingularValueDecomposition)是线性代数中一种重要的矩阵分解,其在图形学、统计学、推荐系统、信号处理等领域有重要应用。本讲我们将介绍奇异值分解在图形压缩中的运用,并将简单介绍下Matlab对于图形和视频的处理。目录线性代数基础知识回顾奇异值分解三个引理例子U的计算V的计算Σ的计算SVD的证明思路利用SVD对
- Factorization Meets the Neighborhood: a MultifacetedCollaborative Filtering Model 阅读笔记
河南老♂乡唐可可
#推荐算法推荐算法算法机器学习
0.奇异值分解SingularValueDecompositionSVD是将一个m×nm\timesnm×n的矩阵分解成三个矩阵的乘积即A=UΣVTA=U\SigmaV^TA=UΣVT其中U,VU,VU,V分别为m×m,n×nnm\timesm,n\timesnnm×m,n×nn的矩阵Σ\SigmaΣ是一个m×nm\timesnm×n的对角矩阵其中UUU,是左奇异矩阵,为AATAA^TAAT的所有
- 奇异值分解(SVD)【详细推导证明】
格兰芬多_未名
机器学习机器学习矩阵分解
机器学习笔记机器学习系列笔记,主要参考李航的《机器学习方法》,见参考资料。第一章机器学习简介第二章感知机第三章支持向量机第四章朴素贝叶斯分类器第五章Logistic回归第六章线性回归和岭回归第七章多层感知机与反向传播【Python实例】第八章主成分分析【PCA降维】第九章隐马尔可夫模型第十章奇异值分解文章目录机器学习笔记一、矩阵的基本子空间二、舒尔分解三、奇异值分解(1)定义(2)证明(3)与四大
- Googlev2Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
源代码•宸
计算机视觉论文深度学习BN神经网络人工智能
文章目录批标准化:缓解内部协变量偏移加快深度神经网络训练GoogleNetv2全文翻译论文结构摘要1引言2减少内部协变量偏移(ICS)3通过小批量统计进行标准化3.1使用批量归一化网络进行训练和推理指数滑动平均3.2批量归一化卷积网络3.3批量归一化可实现更高的学习率奇异值分解SVD3.4批量归一化对模型进行正则化4实验4.1随着时间的推移激活4.2ImageNet分类4.2.1加速BN网络提高学
- PCA实例及代码
morie_li
在模型学习的过程中,训练集的维度较多会引起训练时间的增大,且得到的模型结构庞大,故需减少特征数量,但同时能够避免信息的丢失。将特征数量从几百上千降低到几十的过程就是数据降维。主成分分析(PrincipalComponentAnalysis,PCA)是数据降维的一种,实现方法一般有两种:一种用特征值分解去实现,一种用奇异值分解去实现特征值分解:推导详情见http://blog.codinglabs.
- 机器学习中的SVD总结
一只胖猪猪
1.矩阵分解1.1矩阵分解的作用矩阵填充(通过矩阵分解来填充原有矩阵,例如协同过滤的ALS算法就是填充原有矩阵)清理异常值与离群点降维、压缩个性化推荐间接的特征组合(计算特征间相似度)1.2矩阵分解的方法(1)特征值分解(2)PCA(PrincipalComponentAnalysis)分解,作用:降维、压缩。(3)SVD(SingularValueDecomposition)分解,也叫奇异值分解
- 【MATLAB】 SSA奇异谱分析信号分解算法
Lwcah
MATLAB信号分解算法matlab算法开发语言
有意向获取代码,请转文末观看代码获取方式~1基本定义SSA奇异谱分析(SingularSpectrumAnalysis)是一种处理非线性时间序列数据的方法,可以对时间序列进行分析和预测。它基于构造在时间序列上的特定矩阵的奇异值分解(SVD),可以从一个时间序列中分解出趋势、振荡分量和噪声。具体流程如下:根据原始时间序列构建轨迹矩阵XXX。对矩阵X进行奇异值分解:X=∑i=1rσiUiViTX=\s
- 奇异值分解在图形压缩中的应用
蒋志昂
线性代数线性代数
奇异值分解在图形压缩中的应用在研究奇异值分解的工程应用之前,我们得明白什么是奇异值?什么是奇异向量?奇异值与奇异向量概念:奇异值描述了矩阵在一组特定向量上的行为,奇异向量描述了其最大的作用方向。奇异值分解(SVD)矩阵A的分解涉及一个m×nm\timesnm×n的矩阵Σ\SigmaΣ,其中Σ\SigmaΣ=[D000]\begin{bmatrix}D&0\\0&0\end{bmatrix}[D00
- SVD和EVD的关系
快把我骂醒
算法笔记
文章目录SVD和EVD基本概念具体计算中的关系SVD和EVD基本概念奇异值分解(SingularValueDecomposition,SVD)和特征值分解(EigenvalueDecomposition,EVD)是矩阵分解的两种常见方法,它们在线性代数、统计学和机器学习等领域中经常被使用。虽然它们有一些相似之处,但也存在一些重要的区别。定义和形式:SVD(奇异值分解):对于任意矩阵(AAA),SV
- 利用矩阵分解实现推荐算法
无人不智能,机器不学习
算法矩阵分解推荐算法
利用矩阵分解实现推荐算法1.矩阵分解方法矩阵分解在推荐算法中有着广泛的应用,提起矩阵分解我们首先想到的是SVD奇异值分解。(1)因此这里我们首先介绍一下SVD分解,在推荐算法中,我们一般把评分矩阵进行SVD分解,然后,通过选择部分较大的奇异值进行降维,如果我们要计算用户i对物品j的评分则只需要计算分解后的矩阵的乘积,通过这种方法就可以将评分表中没有评分的位置得到一个预测评分,通过找到最高评分对应的
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc