- 没有免费的午餐定理
做程序员的第一天
机器学习人工智能机器学习
没有免费午餐定理(NoFreeLunchTheorem,NFL)是由Wolpert和Macerday在最优化理论中提出的.没有免费午餐定理证明:对于基于迭代的最优化算法,不存在某种算法对所有问题(有限的搜索空间内)都有效.如果一个算法对某些问题有效,那么它一定在另外一些问题上比纯随机搜索算法更差.也就是说,不能脱离具体问题来谈论算法的优劣,任何算法都有局限性.必须要“具体问题具体分析”.没有免费午
- 袁亚湘院士上《开讲啦》变数学魔术啦!
MatheMagician
人工智能hashtabletabxhtmlj2ee
早点关注我,精彩不迷路!上个月中,我敬仰已久的袁亚湘院士登上了央视《开讲啦》的舞台,给刚开学不久的孩子们献上了精彩的演讲,演讲全程大家可看视频慢慢欣赏:视频1袁亚湘院士《开讲啦》演讲袁老师是知名的最优化理论的专家,在我还在读大三的时候,还曾通过天大数学系黄老师介绍,邮件联系袁老,想找他去读最优化方向的研究生。无奈专业差距太大,在流程上也几乎走不通,不过袁老师还是耐心地给我回了信,并且给了我很多鼓励
- 最优化理论习题(与考试相关)
ˇasushiro
最优化理论笔记
文章目录凸集与凸函数的证明单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法凸集与凸函数的证明凸函数证明就是求HessianHessianHessian矩阵是否为正定矩阵即可单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法
- 最优化基础 - (最优化问题分类、凸集)
Big David
数值优化数值优化最优化问题分类凸集Farkas引理
系统学习最优化理论什么是最优化问题?决策问题:(1)决策变量(2)目标函数(一个或多个)(3)一个可由可行策略组成的集合(等式约束或者不等式约束)最优化问题基本形式1最优化问题分类根据可行域S划分:无约束/约束优化根据函数的性质划分:线性规划/非线性规划根据可行域的性质划分:离散优化/连续优化根据函数的向量性质划分:单目标/多目标优化根据规划问题有关信息的确定性划分:随机/模糊/确定性规划2预备知
- 《学校心理学--体验式团体教育模式理论与实践》第一、二章读后感
宋艳云学校心理学
今天,我认真学习了《学校心理学--体验式团体教育模式理论与实践》第一、二章。第一章主要阐述了学校心理学的基本定义、发展历史和现状、研究方法,以及相关学科的区别和联系等;第二章主要介绍和阐述了教育教学最优化理论、国内外教育教学最优化的进程,以及教育教学最优化探索新背景下引发的体验式团体教育模式。虽然我国一直提倡素质教育,提倡减轻学生过重的课业负担,但应试教育还是现代中国所有教育模式中最优的必然选择。
- powell算法简介
重露成涓滴
姓名:彭帅学号:17021210850【嵌牛导读】:Powell是利用函数值来构造共轭搜索方向的一种共轭搜索方法,由于对于n维正定二次函数,共轭搜索方向具有n次收敛的特性,所以powell是直接搜索法中十分有效的一种算法。【嵌牛鼻子】:优化算法【嵌牛提问】:powell算法简介【嵌牛正文】:复杂函数的全局最优化问题是在求解各种复杂工程与科学计算问题中提炼出来的亟待解决的计算问题,最优化理论方法是应
- [足式机器人]Part2 Dr. CAN学习笔记- 最优控制Optimal Control Ch07-2 动态规划 Dynamic Programming
LiongLoure
控制算法学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-最优控制OptimalControlCh07-2动态规划DynamicProgramming1.基本概念2.代码详解3.简单一维案例1.基本概念RichoardBellman最优化理论:Anoptimalpolicyhasthepropertythatwhatevertheinitialstateandinitialdecision
- 最优化理论与方法复习(6)---凸集和凸函数
冒冒菜菜
最优化理论与方法最优化理论与方法凸集凸函数期末复习
文章目录1.凸集1.1定义1.2例题2.凸函数2.1判断方式2.2例题1.凸集1.1定义 设SSS为nnn维欧式空间RnR^nRn一个集合,对于任意的X(1)X^{(1)}X(1),X(2)∈SX^{(2)}∈SX(2)∈S,及每个实数λ∈[0,1]λ∈[0,1]λ∈[0,1],有λX(1)+(1−λ)X(2)∈SλX^{(1)}+(1-λ)X^{(2)}∈SλX(1)+(1−λ)X(2)∈S,则
- 最优化理论期末复习笔记 Part 2
hijackedbycsdn
笔记最优化凸优化
数学基础线性代数从行的角度从列的角度行列式的几何解释向量范数和矩阵范数向量范数矩阵范数的更强的性质的意义几种向量范数诱导的矩阵范数1范数诱导的矩阵范数无穷范数诱导的矩阵范数2范数诱导的矩阵范数各种范数之间的等价性向量与矩阵序列的收敛性函数的可微性与展开一维优化问题牛顿莱布尼茨公式对多维的拓展Lipschitz连续中值定理凸优化问题凸函数的判断f在D一阶可微正定矩阵f在D二阶可微无约束问题的最优性条
- 9-11月学习小结
宋艳云学校心理学
河南焦作修武宋艳云近段时间,我认真学习了《学校心理学--体验式团体教育模式理论与实践》前几章。通过学习,我了解到学校心理学的基本定义、发展历史和现状、研究方法,以及相关学科的区别和联系等;教育教学最优化理论、国内外教育教学最优化的进程,以及教育教学最优化探索新背景下引发的体验式团体教育模式。虽然我国一直提倡素质教育,提倡减轻学生过重的课业负担,但应试教育还是现代中国所有教育模式中最优的必然选择。所
- 最优化理论期末复习笔记 Part 1
hijackedbycsdn
笔记最优化凸优化
数学基础线性代数从行的角度从列的角度行列式的几何解释向量范数和矩阵范数向量范数矩阵范数的更强的性质的意义几种向量范数诱导的矩阵范数1范数诱导的矩阵范数无穷范数诱导的矩阵范数2范数诱导的矩阵范数各种范数之间的等价性向量与矩阵序列的收敛性函数的可微性与展开一维优化问题牛顿莱布尼茨公式对多维的拓展Lipschitz连续中值定理凸优化问题凸函数的判断f在D一阶可微正定矩阵f在D二阶可微无约束问题的最优性条
- 【自动驾驶中的SLAM技术】第2讲:基础数学知识回顾
兔子不吃草~
自动驾驶中的SLAM技术自动驾驶人工智能机器学习
第二讲:基础数学回顾文章目录第二讲:基础数学回顾1几何学1.1坐标系1.2坐标变换①空间向量②基变换③坐标变换④总结1.3四元数与旋转向量2运动学2.1李群视角2.2四元数视角2.3四元数的李代数与旋转向量间的转换2.4SO(3)+t上的运动学2.5线速度与加速度2.6扰动模型2.7关于左扰动和右扰动的选择2.7.1第一种形式2.7.2第二种形式2.8运动学示例:圆周运动3滤波器与最优化理论3.1
- 最优化理论复习--对偶单纯形方法及灵敏度分析
ˇasushiro
最优化理论矿大往事经验分享人工智能
对偶单纯形方法定义:设x(0)x^{(0)}x(0)是(L)问题的基本解(不一定是可行解(极点)),如果它的对偶问题的解释可行的,则称x(0)x^{(0)}x(0)为原问题的对偶可行基本解从而衍生出结论:当对偶可行的基本解是原问题的可行解时,由于判别数=0>=0>=0了,而是要保证判别数是=0>=0>=0,尽量将判别数化为=0>=0>=0的方法也对称过来了的,步骤变成了先根据最小的右端项B−1bB
- 最优化理论与方法---一维搜索
冒冒菜菜
最优化理论与方法最优化理论与方法一维搜索期末复习
文章目录1.牛顿法2.割线法3.抛物线法1.牛顿法2.割线法 注:抛物线法其实就是牛顿法的近似。因为[xk−xk−1]/[f′(xk)−f′(xk−1)][x^k-x^{k-1}]/[f'(x^k)-f'(x^{k-1})][xk−xk−1]/[f′(xk)−f′(xk−1)]极限就是1/f′′(xk)1/f''(x^k)1/f′′(xk)。3.抛物线法
- [最优化理论] 梯度下降法 + 精确线搜索(单峰区间搜索 + 黄金分割)C++ 代码
hijackedbycsdn
c++最优化理论
这是我的课程作业,用了Eigen库,最后的输出是latex的表格的一部分具体内容就是梯度下降法+精确线搜索(单峰区间搜索+黄金分割)从书本的Matlab代码转译过来的其实,所以应该是一看就懂了这里定义了两个测试函数fun和fun2整个最优化方法包装在SteepestDescent类里面用了模板封装类,这样应该是double和Eigne的Vector都可以支持的用了tuple返回值,用了functi
- 教学是一门慢的艺术
赤木晴子L
好教师也要慢慢来,对待学生、对待生命、对待心灵,需要的是诚心、耐心、恒心。教学效果的落脚点是学而不是教,学生有无进步和发展是衡量教学有没有效果的唯一指标。教学有没有效果,并不是指教师教得好不好或教得认真不认真,而是指学生有没有学到什么或学得好不好,尽管它们之间也有各种关系。苏联教育家巴班斯基提出了教学过程最优化理论。按照巴班斯基的说法,“最优的”这一术语是指“从一定标准来看是最好的”。这里的“标准
- 最优化理论
HI_Forrest
学习笔记c++
最优化理论资料一optimalcondition最优性条件概念二一维搜索逐次下降法iterativedecent单峰函数二分法dichotomoussearch三资料B站最优化理论与算法上交最优化方法一目标函数:需要优化的函数决策变量,可以调整变化的量约束集,决策变量的可行集无约束优化,决策变量任意值约束优化,决策变量范围有限制非线性规划:代价函数或者约束是非线性的。其他规划问题:整数规划inte
- 第一章 最优化理论基础
是璇子鸭
最优化算法矩阵
内容来自马昌凤编著的《最优化方法及其Matlab程序设计》,文章仅为个人的学习笔记,感兴趣的朋友详见原书1最优化问题的数学模型简单来说,最优化问题就是求一个多元函数在某个给定集合上的极值,其一般表达为:minf(x)minf(x)minf(x)s.t.x∈Ks.t.x∈Ks.t.x∈K其中,KKK为可行域,xxx为决策变量,s.t.是subjectto(受限于)的缩写。非线性规划:minf(x)m
- 最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法
七七喝椰奶
数学建模应当掌握的十类算法算法
介绍当涉及到模拟退火法、神经网络和遗传算法时,它们都是优化和搜索问题的常见算法。下面我将逐个介绍这些算法的基本原理和应用。1.模拟退火法(SimulatedAnnealing):模拟退火法是一种全局优化算法,模拟了金属冶炼中的退火过程。它通过接受更差的解决方案的可能性来避免陷入局部最优解。模拟退火法在搜索空间中随机移动,并逐渐减少移动的范围,以找到全局最优解。主要步骤包括初始化解决方案,定义能量函
- 【兔子王赠书第4期】用ChatGPT轻松玩转机器学习与深度学习
Want595
#《粉丝福利》chatgpt机器学习深度学习
文章目录前言机器学习深度学习ChatGPT推荐图书粉丝福利尾声前言兔子王免费赠书第4期来啦,突破传统学习束缚,借助ChatGPT的神奇力量,解锁AI无限可能!机器学习机器学习是人工智能领域的一个重要分支,它的目的是让计算机系统能够自动完成特定任务,而不需要人类专门为其编写指令。机器学习所涉及的技术和算法主要包括统计学、概率论、最优化理论、信息论等。在未来的人工智能时代,机器学习将成为重要的基础技术
- 立体匹配--中值滤波
zfywen
计算机视觉人工智能c++
立体匹配文章目录一.课题说明二.概要设计三.算法设计四.源程序及注释五.运行及调试分析六.课程设计总结一、课题说明立体匹配是立体视觉从图像生成三维点云的常规手段。立体匹配算法主要是通过建立一个能量代价函数,通过此能量代价函数最小化来估计像素点视差值。立体匹配算法的实质就是一个最优化求解问题,通过建立合理的能量函数,增加一些约束,采用最优化理论的方法进行方程求解,这也是所有的病态问题求解方法。二、概
- 人工智能数学知识
你美依旧
1线性代数向量向量空间;矩阵线性变换特征值特征向量;奇异值奇异值分解1线性代数是人工智能的数学基础之一2线性代数的核心意义在于将具体事物抽象为数学对象3线性代数描述着食物的静态(向量)和(动态变换)的特征2概率论与统计随机事件;条件概率全概率贝叶斯概率统计量常见分布;基本原理3最优化理论极限导数;线性逼近泰勒展开凸函数Jensen不等式;最小二乘法;梯度梯度下降1先初始化一下权重参数2然后利用优化
- 【电子书资源】数值方法&最优化理论&算法&凸优化 ---书籍调研(附网盘下载地址)...
十年一梦实验室
算法python人工智能机器学习大数据
随着计算机和计算方法的飞速发展,几乎所有学科都走向定量化和精确化,从而产生了一系列计算性的学科分支,如计算物理、计算化学、计算生物学、计算地质学、计算气象学和计算材料学等,计算数学中的数值计算方法则是解决“计算”问题的桥梁和工具。我们知道,计算能力是计算工具和计算方法的效率的乘积,提高计算方法的效率与提高计算机硬件的效率同样重要。科学计算已用到科学技术和社会生活的各个领域中。数值计算方法,是一种研
- 数学建模:最优化问题及其求解概述
AGI_Player
数学建模数学建模
数学建模:最优化问题及其求解概述最优化问题定义分类离散优化问题连续优化问题求解此博客围绕运筹学以及最优化理论的相关知识,通俗易懂地介绍了最优化问题的定义、分类以及求解算法。最优化问题定义数学优化(MathematicalOptimization)问题,也叫最优化问题,属于运筹学研究的主要内容,它是指在一定约束条件下,求解一个目标函数的最大值(或最小值)问题。这种问题在生活中很常见,例如如何利用有限
- 【最优化理论】人工智能与最优化理论的联系
果壳中的robot
人工智能机器学习算法
1.最优化理论的主要分支最优化理论的主要分支有两类,包括针对一般问题的数学规划模型以及针对特定问题的数学规划模型,其各自涵盖的范围如下:一般问题的数学规划模型:线性规划整数规划非线性规划动态规划网络流优化…特定问题的数学模型:网络计划排队论存储论决策论对策论…2.优化方法简述例如优化问题为maxf(x)\maxf(x)maxf(x),其函数图像如下:优化的基本方法是:从a,b之间的任一点出发,朝
- 【最优化理论】线性规划标准模型的基本概念与性质
果壳中的robot
算法机器学习动态规划数学建模性能优化
我们在中学阶段就遇到过线性规划问题,主要是二维的情况,而求解的方法一般是非常直观、高效的图解法。根据过往的经验,线性规划问题的最优目标值一般在可行域的顶点处取得,那么本文就对这个问题进行更深入的探讨,维度也从二维推广至高维,内容主要包括以下问题:线性规划问题的可行域有哪些性质?线性规划问题的可行域顶点有哪些特点?为什么可行域的顶点有最优解?顶点的数学描述?高维模型有哪些性质?1.线性规划模型的一些
- 机器人中的数值优化|【二】最速下降法,可行牛顿法的python实现,以Rosenbrock function为例
影子鱼Alexios
algorithmpythonpython机器人人工智能数学
机器人中的数值优化|【二】最优化方法:最速下降法,可行牛顿法的python实现,以Rosenbrockfunction为例在上一节中提到了我们详细探讨了数值优化/最优化理论中的基本概念和性质,现在开始使用python对算法进行实现。上一节链接:机器人中的数值优化|【一】数值优化基础导入依赖导入依赖库并定义常量,C_CONSTANT为步长超参数,取0~1之间,停机准则STOP_CONSTANT,意为
- 神经网络基础原理(二)----分类问题(含Tensorflow 2.X代码)
天蒙光
深度学习神经网络tensorflow机器学习深度学习
举线性回归的例子只是为了从最简单的角度来介绍神经网络的执行流程。神经网络在拟合线性函数方面的确存在得天独厚的优势。事实上,如果你对最优化理论熟悉,会发现神经网络的底层原理与最优化理论是一致的(目的都是求某一目标函数的极值)。神经网络擅长的并不仅限于拟合线性函数。分类问题是神经网络最经典的应用之一。所谓的分类问题,是指给定m个学习样本,如何根据先验知识,将这m个样本分成k类。解决分类问题第一步:数据
- Compositional Minimax Optimization学习之路
他不是混子QAQ
学习
梯度最优化理论最优化基础---基本概念:凸优化、梯度、Jacobi矩阵、Hessian矩阵_哔哩哔哩_bilibili从图像来看:存在两点连线上的点不在集合内定义ax1+(1-a)x2其实就是两点连线上的点可用与函数围成的面积和与坐标轴围成的面积角度理解凸函数凸优化在定义域和F(X)都是凸集的问题(凸凸问题),就是凸优化jacobi广义导数n维映射到m维梯度的雅可比矩阵就是海森矩阵动量法(Mome
- 机器学习笔记之最优化理论与算法(十二)无约束优化问题——共轭梯度法
静静的喝酒
最优化理论与方法机器学习深度学习共轭梯度法非线性共轭梯度法FR方法PRP方法n步重启策略
机器学习笔记之最优化理论与方法——共轭梯度法引言回顾:共轭方向法的重要特征线性共轭梯度法共轭方向公式的证明过程关于线搜索公式中参数的化简关于线搜索公式中步长部分的化简关于线搜索公式中共轭方向系数的化简参数化简的目的非线性共轭梯度法(FR,PRP方法)关于非线性共轭梯度法的说明引言上一节主要介绍了共轭方向法的重要特征以及相关证明,本节将介绍共轭方向法的代表算法——共轭梯度法。回顾:共轭方向法的重要特
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&