时间限制:20000ms
单点时限:1000ms
内存限制:256MB
且说上一周的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了!
小Ho现在手上有M张奖券,而奖品区有N件奖品,分别标号为1到N,其中第i件奖品需要need(i)张奖券进行兑换,同时也只能兑换一次,为了使得辛苦得到的奖券不白白浪费,小Ho给每件奖品都评了分,其中第i件奖品的评分值为value(i),表示他对这件奖品的喜好值。现在他想知道,凭借他手上的这些奖券,可以换到哪些奖品,使得这些奖品的喜好值之和能够最大。
提示一:合理抽象问题、定义状态是动态规划最关键的一步
提示二:说过了减少时间消耗,我们再来看看如何减少空间消耗
每个测试点(输入文件)有且仅有一组测试数据。
每组测试数据的第一行为两个正整数N和M,表示奖品的个数,以及小Ho手中的奖券数。
接下来的n行描述每一行描述一个奖品,其中第i行为两个整数need(i)和value(i),意义如前文所述。
测试数据保证
对于100%的数据,N的值不超过500,M的值不超过10^5
对于100%的数据,need(i)不超过2*10^5, value(i)不超过10^3
对于每组测试数据,输出一个整数Ans,表示小Ho可以获得的总喜好值。
样例输入
5 1000
144 990
487 436
210 673
567 58
1056 897
样例输出
2099
思路:
01背包模板,采用一维数组。
代码:
#include
#include
#include
#include
using namespace std;
int w[1000000],c[1000000];
int f[1000000*4];
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>w[i]>>c[i];
}
for(int i=1;i<=n;i++)
{
for(int v=m;v>=w[i];v--)
{
if(f[v-w[i]]+c[i]>f[v])
{
f[v]=f[v-w[i]]+c[i];
}
}
}
cout<
--------------------------------------------------------------------------------------------------------------------------
时间限制:20000ms
单点时限:1000ms
内存限制:256MB
描述
且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了!
等等,这段故事为何似曾相识?这就要从平行宇宙理论说起了………总而言之,在另一个宇宙中,小Ho面临的问题发生了细微的变化!
小Ho现在手上有M张奖券,而奖品区有N种奖品,分别标号为1到N,其中第i种奖品需要need(i)张奖券进行兑换,并且可以兑换无数次,为了使得辛苦得到的奖券不白白浪费,小Ho给每件奖品都评了分,其中第i件奖品的评分值为value(i),表示他对这件奖品的喜好值。现在他想知道,凭借他手上的这些奖券,可以换到哪些奖品,使得这些奖品的喜好值之和能够最大。
提示一: 切,不就是0~1变成了0~K么
提示二:强迫症患者总是会将状态转移方程优化一遍又一遍
提示三:同样不要忘了优化空间哦!
输入
每个测试点(输入文件)有且仅有一组测试数据。
每组测试数据的第一行为两个正整数N和M,表示奖品的种数,以及小Ho手中的奖券数。
接下来的n行描述每一行描述一种奖品,其中第i行为两个整数need(i)和value(i),意义如前文所述。
测试数据保证
对于100%的数据,N的值不超过500,M的值不超过10^5
对于100%的数据,need(i)不超过2*10^5, value(i)不超过10^3
输出
对于每组测试数据,输出一个整数Ans,表示小Ho可以获得的总喜好值。
样例输入
5 1000
144 990
487 436
210 673
567 58
1056 897
样例输出
5940
思路:
完全背包模板
代码:
#include
using namespace std;
int w[1000000*4],c[1000000*4];
int f[1000000*4];
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
cin>>w[i]>>c[i];
for(int i=1;i<=n;i++)
{
for(int v=w[i];v<=m;v++)
{
if(f[v]