[秩相关] Spearman秩相关系数计算及假设检验

首先说明秩相关系数还有其他类型,比如kendal秩相关系数。

使用Pearson线性相关系数有2个局限:

  1. 必须假设数据是成对地从正态分布中取得的。
  2. 数据至少在逻辑范围内是等距的。

对于更一般的情况有其他的一些解决方案,Spearman秩相关系数就是其中一种。Spearman秩相关系数是一种无参数(与分布无关)检验方法,用于度量变量之间联系的强弱。在没有重复数据的情况下,如果一个变量是另外一个变量的严格单调函数,则Spearman秩相关系数就是+1或-1,称变量完全Spearman秩相关。注意这和Pearson完全相关的区别,只有当两变量存在线性关系时,Pearson相关系数才为+1或-1。

对原始数据xi,yi按从大到小排序,记x'i,y'i为原始xi,yi在排序后列表中的位置,x'i,y'i称为xi,yi的秩次,秩次差di=x'i-y'i。Spearman秩相关系数为:

           

位置 原始X 排序后 秩次 原始Y 排序后 秩次 秩次差
1 12 546 5 1 78 6 1
2 546 45 1 78 46 1 0
3 13 32 4 2 45 5 1
4 45 13 2 46 6 2 0
5 32 12 3 6 2 4 1
6 2 2 6 45 1 3 -3

对于上表数据,算出Spearman秩相关系数为:1-6*(1+1+1+9)/(6*35)=0.6571

如果原始数据中有重复值,则在求秩次时要以它们的平均值为准,比如:

原始X 秩次 调整后的秩次
0.8 5 5
1.2 4 (4+3)/2=3.5
1.2 3 (4+3)/2=3.5
2.3 2 2
18 1 1

假设检验:

Spearman秩相关系数也应该进行假设检验,当n小于等于50时,用查表法,当n大于50时,计算统计量t的值,即用前面皮尔森相关系数假设检验中t值的计算方式。


对于上述数据,查阅秩相关系数检验的临界值表

n 显著水平
0.05 0.01
5 0.9 1
6 0.829 0.943
7 0.714 0.893

置信度=1-显著水平。上表显示在n=6的时候,当spearman秩相关系数>=0.829时我们有95%的置信度认为两个随机变量相关,当spearman秩相关系数>=0.943时我们有99%的置信度认为两个随机变量相关。由于0.6571<0.829,即置信度达不到95%,所以我们不能认为X和Y相关。


实例:

[秩相关] Spearman秩相关系数计算及假设检验_第1张图片

[秩相关] Spearman秩相关系数计算及假设检验_第2张图片

[秩相关] Spearman秩相关系数计算及假设检验_第3张图片


你可能感兴趣的:(概率与数理统计)