LeGo-LOAM激光雷达定位算法源码阅读(四)

文章目录

  • 1.transforFusion节点框架
    • 1.1main
    • 1.2回调函数
  • 2.odomAftMappedHandler
  • 3.odomAftMappedHandler
  • 3.总结

无人驾驶算法学习(九):LeGo-LOAM激光雷达定位算法
LeGo-LOAM激光雷达定位算法源码阅读(一)
LeGo-LOAM激光雷达定位算法源码阅读(二)
LeGo-LOAM激光雷达定位算法源码阅读(三)

1.transforFusion节点框架

1.1main


int main(int argc, char** argv)
{
    ros::init(argc, argv, "lego_loam");
    
    TransformFusion TFusion;//构造函数,重要的两个回调函数

    ROS_INFO("\033[1;32m---->\033[0m Transform Fusion Started.");

    ros::spin();

    return 0;
}


1.2回调函数

    TransformFusion(){

        pubLaserOdometry2 = nh.advertise ("/integrated_to_init", 5);////综合后发送的里程计信息
        subLaserOdometry = nh.subscribe("/laser_odom_to_init", 5, &TransformFusion::laserOdometryHandler, this);//回调函数1,订阅特征匹配时粗配准的里程计信息
        subOdomAftMapped = nh.subscribe("/aft_mapped_to_init", 5, &TransformFusion::odomAftMappedHandler, this);//回调函数2,订阅建图精配准之后的里程计信息

        laserOdometry2.header.frame_id = "/camera_init";
        laserOdometry2.child_frame_id = "/camera";

        laserOdometryTrans2.frame_id_ = "/camera_init";
        laserOdometryTrans2.child_frame_id_ = "/camera";

        map_2_camera_init_Trans.frame_id_ = "/map";
        map_2_camera_init_Trans.child_frame_id_ = "/camera_init";

        camera_2_base_link_Trans.frame_id_ = "/camera";
        camera_2_base_link_Trans.child_frame_id_ = "/base_link";

        for (int i = 0; i < 6; ++i)
        {
            transformSum[i] = 0;
            transformIncre[i] = 0;
            transformMapped[i] = 0;
            transformBefMapped[i] = 0;
            transformAftMapped[i] = 0;
        }
    }

2.odomAftMappedHandler

 void laserOdometryHandler(const nav_msgs::Odometry::ConstPtr& laserOdometry)
    {
            //laserOdometryHandler是将粗配准的里程计信息与精配准的里程计信息融合计算,并在回调函数中便发送了最终外发的里程计话题

        currentHeader = laserOdometry->header;

        double roll, pitch, yaw;
        geometry_msgs::Quaternion geoQuat = laserOdometry->pose.pose.orientation;
        tf::Matrix3x3(tf::Quaternion(geoQuat.z, -geoQuat.x, -geoQuat.y, geoQuat.w)).getRPY(roll, pitch, yaw);

        transformSum[0] = -pitch;
        transformSum[1] = -yaw;
        transformSum[2] = roll;

        transformSum[3] = laserOdometry->pose.pose.position.x;
        transformSum[4] = laserOdometry->pose.pose.position.y;
        transformSum[5] = laserOdometry->pose.pose.position.z;

        transformAssociateToMap();//点云坐标转化到世界坐标

        geoQuat = tf::createQuaternionMsgFromRollPitchYaw
                  (transformMapped[2], -transformMapped[0], -transformMapped[1]);

        laserOdometry2.header.stamp = laserOdometry->header.stamp;
        laserOdometry2.pose.pose.orientation.x = -geoQuat.y;
        laserOdometry2.pose.pose.orientation.y = -geoQuat.z;
        laserOdometry2.pose.pose.orientation.z = geoQuat.x;
        laserOdometry2.pose.pose.orientation.w = geoQuat.w;
        laserOdometry2.pose.pose.position.x = transformMapped[3];
        laserOdometry2.pose.pose.position.y = transformMapped[4];
        laserOdometry2.pose.pose.position.z = transformMapped[5];
        pubLaserOdometry2.publish(laserOdometry2);

        laserOdometryTrans2.stamp_ = laserOdometry->header.stamp;
        laserOdometryTrans2.setRotation(tf::Quaternion(-geoQuat.y, -geoQuat.z, geoQuat.x, geoQuat.w));
        laserOdometryTrans2.setOrigin(tf::Vector3(transformMapped[3], transformMapped[4], transformMapped[5]));
        tfBroadcaster2.sendTransform(laserOdometryTrans2);
    }

3.odomAftMappedHandler

    void odomAftMappedHandler(const nav_msgs::Odometry::ConstPtr& odomAftMapped)
    {
        //通过odomAftMappedHandler函数获取精配准后的位姿作为transformAftMapped,而获取配准后的速度信息作为transformBefMapped准备下一次计算
        double roll, pitch, yaw;
        geometry_msgs::Quaternion geoQuat = odomAftMapped->pose.pose.orientation;
        tf::Matrix3x3(tf::Quaternion(geoQuat.z, -geoQuat.x, -geoQuat.y, geoQuat.w)).getRPY(roll, pitch, yaw);

        //位姿作为计算的基础
        transformAftMapped[0] = -pitch;
        transformAftMapped[1] = -yaw;
        transformAftMapped[2] = roll;

        transformAftMapped[3] = odomAftMapped->pose.pose.position.x;
        transformAftMapped[4] = odomAftMapped->pose.pose.position.y;
        transformAftMapped[5] = odomAftMapped->pose.pose.position.z;

        //速度作为下一次计算的先验
        transformBefMapped[0] = odomAftMapped->twist.twist.angular.x;
        transformBefMapped[1] = odomAftMapped->twist.twist.angular.y;
        transformBefMapped[2] = odomAftMapped->twist.twist.angular.z;

        transformBefMapped[3] = odomAftMapped->twist.twist.linear.x;
        transformBefMapped[4] = odomAftMapped->twist.twist.linear.y;
        transformBefMapped[5] = odomAftMapped->twist.twist.linear.z;
    }

3.总结

featureAssociation发出粗配准的里程计信息(/laser_odom_to_init),mapOptimization发出精配准的信息(/aft_mapped_to_init),均以200Hz的频率,当odomAftMappedHandler收到精配准信息后更新位姿,这个位姿将在laserOdometryHandler收到下一条粗配准信息后综合计算再发出,图示如下:
LeGo-LOAM激光雷达定位算法源码阅读(四)_第1张图片

你可能感兴趣的:(无人驾驶算法学习)