如果对机器人方向学习有些迷茫,推荐先阅读如下文章:
机器人学科是非常有趣的,对理论和实践的要求都比较高。掌握C/C++/Python/Matlab,能够使用V-Rep/Webots/Gazebo等仿真软件。这里需要重点强调一下仿真软件,由于学校和学生教育资金投入,仿真可以算是极低成本门槛而又有直观效果的工具了。
这里的免费是指参考书都无需购买,连下载币都不需要~
极低成本的仿真实践(CARLA)当然,机器人推荐Cozmo和Tello,成熟稳定,价格实惠,远低于1k,输入设备推荐游戏手柄和LeapMotion,输出设备伺服电机等。
知名学府的公开课(ETH,MIT,Stanford,Carnegie Mellon等),例如:
讲解了机器人学入门,运动规划,传感器,概率机器人学,蒙特卡罗定位,场景识别,同步定位和地图构建等,课程最大的特点是侧重实践,资料十分丰富具体。(链接内附有课程全部文档资料)
- 151-0851-00L Robot Dynamics M. Hutter, R. Siegwart, T. Stastny Material链接
151-0662-00L Programming for Robotics - Introduction to ROS D. Jud, M. Wermelinger, Marko Bjelonic, P. Fankhauser, M. Hutter Material链接 (经典ROS编程入门课程)
中文翻译版本-ROS编程基础课程2019更新版资料和习题解答说明(ETH苏黎世联邦理工学院):https://blog.csdn.net/zhangrelay/article/details/79463689
选择一些仿真和真实机器人,多使用,多看源码,多思考,多练习。
案例包括了地上跑,工厂用,天上飞,水里游等多场景仿真和实物。
这款机器人案例十分丰富,参考文档如下:
http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
turtlebot3文档几乎涵盖的服务机器人的全部要点,基础概念,自动驾驶,泊车,跟随,导航,SLAM,全景图,遥控,机器学习,ROS2等。
自动驾驶仿真案例
industrial_training:https://github.com/ros-industrial/industrial_training
支持版本:indigo,kinetic,melodic。
ROS Industrial
空中机器人可以参考hector_quadrotor:
有室内室外两种典型仿真环境,室外仿真如下图所示:
GazeboRviz
水下机器人仿真参考:https://github.com/uuvsimulator/uuv_simulator
这是我个人最喜欢的一个案例,涵盖安装,控制,自动导航,MoveIt!,OpenCV,点云,多机器人协作等。
http://wiki.ros.org/Robots/TIAGo/Tutorials
资源链接:https://blog.csdn.net/ZhangRelay/article/details/83988827
资源链接:https://blog.csdn.net/ZhangRelay/article/details/85563481
如今获取机器人知识的途径非常多了,并且大部分都是免费开源的,选择一些有趣的案例进行实践,才能真正掌握。
本博文为第三方分享,不客观,不严谨,仅供参考。
更多案例参考:
Fin
参考网址:
- https://github.com/mithi/robotics-coursework
- https://robotics.mit.edu/
NumberTitleLecturers
151-0851-00LRobot DynamicsR. Y. Siegwart, M. Hutter, K. Rudin, T. Stastny
151-0854-00LAutonomous Mobile RobotsR. Y. Siegwart
151-0664-00LArtificial Intelligence for RoboticsI. Gilitschenski, C. Cadena, R. Y. Siegwart
151-0634-00LPerception and Learning for RoboticsC. Cadena, J.J. Chung, R. Y. Siegwart
Courses
# | Date of Lecture | Week title | Add-on slides | Lecturer |
---|---|---|---|---|
1 | 19.02.2019 | Intro and Motivation | Introduction and Overview (PDF, 14.3 MB) | R. Siegwart |
2 | 26.02.2019 | Locomotion Concepts | Locomotion Concepts (PDF, 6.6 MB) | M. Hutter |
Ex1 | 26.02.2019 | Introduction to V-Rep simulator | Introduction to V-Rep simulator (ZIP, 3.3 MB) | I. Sa, K. Bodie |
3 | 05.03.2019 | Mobile Robot Kinematics | Mobile Robot Kinematics (PDF, 2.3 MB) | R. Siegwart |
4 | 12.03.2019 | Perception I (to 4.3) | Perception I (PDF, 1.4 MB) | R. Siegwart |
5 | 19.03.2019 | Perception II (to 4.4) | Perception II (PDF, 26.9 MB) | M. Chli |
Ex2 | 19.03.2019 | Kinematics & control of a differential drive vehicle | Kinematics & control of a differential drive vehicle (ZIP, 2 MB) Slides (PDF, 395 KB) Solutions (ZIP, 2 MB) |
A. Vempati, M. Brunner |
6 | 26.03.2019 | Perception III: Image Saliency (to 4.5) | Perception III (PDF, 22.7 MB) | M. Chli |
7 | 02.04.2019 | Perception IV: Place Recognition & Line Fitting (to 4.5) | Perception IV (PDF, 21.7 MB) | M. Chli |
Ex3 | 02.04.2019 | Line Extraction | Line Extraction (ZIP, 1.9 MB) Slides (PDF, 706 KB) Solutions (ZIP, 1.9 MB) |
H. Blum, L. Bernreiter |
Q1 | 02.04.2019 | Quiz 1 | M. Grinvald, M. Breyer | |
8 | 09.04.2019 | Localization I (to 5.2) | Localization (PDF, 1.2 MB) | R. Siegwart |
9 | 16.04.2019 | Localization II | Localization II (PDF, 2.4 MB) | R. Siegwart |
Ex4 | 16.04.2019 | Line-based Extended Kalman Filter | Line-based Extended Kalman Filter (ZIP, 2.1 MB) Slides (PDF, 3.2 MB) Solutions (ZIP, 2.1 MB) |
H. Blum, L. Bernreiter |
Week off - Easter Holiday | ||||
10 | 30.04.2019 | SLAM I | SLAM I (PDF, 22.1 MB) | M. Chli |
11 | 07.05.2019 | SLAM II | M. Chli | |
Ex5 | 07.05.2019 | EKF SLAM | EKF SLAM (ZIP, 2.1 MB) | T. Schneider, F. Tschopp |
12 | 14.05.2019 | Planning I (to 6.2) | N. Lawrance | |
13 | 21.05.2019 | Planning II (to 6.3) | N. Lawrance | |
Ex6 | 21.05.2019 | Dijkstra's alg. and the dynamic window | D. Dugas, R. Bähnemann | |
Q2 | 21.05.2019 | Quiz 2 | M. Grinvald, M. Breyer | |
14 | 28.05.2019 | Summary | R. Siegwart |
https://github.com/ethz-asl/ai_for_robotics
This course provides tools from statistics and machine learning enabling the participants to deploy them as part of typical perception pipelines. All methods provided within the course will be discussed in context of and motivated by example applications from robotics. The accompanying exercises will involve implementations and evaluations using typical robotic datasets.
The students are expected to be familiar with the following material:
The number of participants is limited to 50. Enrolment was only valid through registration until Sunday, December 18, 2016. Notifications of acceptance were sent out no on Sunday, January 15, 2017.
This course covers tools from statistics and machine learning enabling the participants to deploy these algorithms as building blocks for perception pipelines on robotic tasks. All mathematical methods provided within the course will be discussed in context of and motivated by example applications mostly from robotics. The main focus of this course are student projects on robotics, with an emphasis on robot perception.
The students are expected to be familiar with material of the "Recursive Estimation" and the "Learning and Intelligent Systems" lectures. Particularly understanding of basic machine learning concepts, stochastic gradient descent for neural networks, reinforcement learning basics, and knowledge of Bayesian Filtering are required. Furthermore, good knowledge of programming in C++ and Python is required.
补充自动驾驶CARLA(http://carla.org/)
CARLA 0.9.5(开发)
[Linux]
CARLA_0.9.5.tar.gz[Linux]
Town06_0.9.5.tar.gz[Linux]
Town07_0.9.5.tar.gzlane_type
现在是枚举,carla.LaneType
carla.LaneMarking
不再是枚举,扩展了颜色,类型,换道和宽度map.get_waypoint
接受一个额外的可选标志参数,lane_type
用于过滤通道类型carla.Map
可以脱离XODR文件构建,carla.Map(town_name, xodr_content)
id
属性到航点,唯一识别高达半厘米精度的航点map.transform_to_geolocation
将Location转换为GNSS GeoLocationclient.apply_batch_sync
批量发送命令并等待服务器响应的方法查看完整的CHANGELOG。
CARLA 0.9.4(开发)
[Linux]
CARLA_0.9.4.tar.gz[Linux]
Town06_0.9.4.tar.gz[Windows]
CARLA_0.9.4.zip (实验性)client.tick()
client.load_map(name)
,client.reload_map()
和client.get_available_maps()
lane_change
,lane_type
,get_right_lane()
和get_left_lane()
manual_control_steeringwheel.py
到使用罗技G29方向盘(以及其他)的控制代理查看完整的CHANGELOG。
CARLA 0.8.2(稳定)
[Linux]
CARLA_0.8.2.tar.gz[Windows]
CARLA_0.8.2.rar (实验)