- 运用逆元优化组合计算#数论
ysa051030
java算法数据结构
数论基础知识和模板-CSDN博客问题分析题目要求统计满足特定条件的排列数目。关键在于:从给定的数组中选择两个数作为n和m剩余的数必须能够组成n个m或m个n的结构计算所有可能的有效排列数目完整#includeusingnamespacestd;typedeflonglongLL;constLLMOD=1e9+7;//快速幂计算a^b%MODLLqpow(LLa,LLb){LLres=1;while(
- 【教程4>第7章>第23节】基于FPGA的RS(204,188)译码verilog实现7——欧几里得迭代算法模块
fpga和matlab
#第7章·通信—信道编译码fpga开发RS译码欧几里得迭代教程4
目录1.软件版本2.RS译码器逆元欧几里得算法模块原理分析3.RS译码器逆元欧几里得算法模块的verilog实现3.1RS译码器逆元欧几里得算法模块verilog程序3.2程序解析欢迎订阅FPGA/MATLAB/Simulink系列教程《★教程1:matlab入门100例》《★教程2:fpga入门100例》《★教程3:simulink入门60例》
- 扩展欧几里德算法 递归法 递推法 手算法 原理及实现
黎哩吖
算法人工智能机器学习
扩展欧几里德算法递归法递推法手算法原理及实现顾名思义,扩展欧几里德算法是在欧几里德算法基础上扩展的算法.欧几里德算法和扩展欧几里德算法在用途上的区别:欧几里德算法(gcd):即求两个整数的最大公约数.扩展欧几里德算法:用于求乘法逆元.用于求贝组等式的一个解.欧几里德算法即辗转相除法.C语言实现:intgcd(inta,intb){returnb==0?a:gcd(b,a%b);}注意此算法的终止条
- 手算逆元及手动模拟扩展欧几里得算法及思路推导
一上午的一个小推导先给出exgcd的代码吧intexgcd(inta,intb,int&x,int&y){///x,y起初不知道,是递归往上求解x,yif(b==0){x=1,y=0;returna;///两处return}intd=exgcd(b,a%b,x,y);inttmp=x;x=y,y=tmp-(a/b)*y;returnd;///记得要返回d啊///【a*x+b*y=1中,x是a在模b
- 【密码学】扩展欧几里得算法例题
应付考试的写法:注意:RSA加解密、签名时:计算的是关于φ(n)的逆元不是直接关于n的逆元,d是e的逆元,φ(n)与e互素才可以有逆元已知n=pxq,计算φ(n),计算d:扩展欧几里得算法流程:题目:d·e=1mod96,e=5,求d递归(不断的做除法,辗转相除)的计算一个三元组。有两个初始的三元组:设三元组(x,y,z),x,y,z满足:因为要算5对96的逆元,一般把大的放在前面即:96*x+5
- 扩展欧几里得算法&乘法逆元
GZkx
数论之旅简单题乘法逆元
扩展欧几里得算法——exgcd主要有两个重要的用途:1.求乘法逆元(下面的例题就是)a*b%mod==1->a与b互为在mod意义下的逆元2.求二元一次线性方程exgcd(a,b,x,y)即为a,b的最大公约数,,令gcd(a,b)=a*x+b*y,则x,y也可以得出来了不懂gcd(最大公约数)的童鞋可以先了解一下哦Description给出2个数M和N(M#include#includeusin
- 扩展欧几里得算法求逆元
hesorchen
#扩展欧几里得算法#逆元
扩展欧几里得算法应该是最优的求逆元算法之一,他和费马小定理具有同样的时间复杂度O(log(n))O(log(n))O(log(n)),但是费马小定理需要模数为质数,扩展欧几里得算法则不需要。逆元定义若aaa与ppp互素,则满足(a×x)modp=1(a\timesx)modp=1(a×x)modp=1的xxx为aaa的逆元。显然,有(k×p+1)modp=1(k\timesp+1)modp=1(k
- java原子类生成随机数,伪随机数(示例代码)
我非杨过
java原子类生成随机数
笔者最近在练习Mysql语句优化,奈何年少不懂,找不到百万级别的测试数据,只好用java随机生成数据凑合用一下,所以写下此篇博客,经测试生成500万条数据后台用了9秒,完全可以接受1.Randomrandom伪随机数类在java.util包下,是最常用的随机数生成器,其使用线性同余公式来生成随机数,所以才说是伪随机。该类的实例是线程安全的,多线程并发使用可能会遇到争用问题,这时可用ThreadLo
- 牛客周赛 Round 51
咸鱼啥也不会
算法
牛客周赛Round51A-小红的同余_牛客周赛Round51(nowcoder.com)分类讨论:只要xxx是奇数,我们就让x+1x+1x+1就可以得到(x+1)modx(x+1)modx
- 入门组算法模板题目
信奥李拜天
CSP-J初赛算法
目前已经将题目都放到洛谷的题单里了。由于洛谷题单限制只有50,所以更多的题目链接我会放到本文里,如果额外题目过多,我会新开一个题单。洛谷题单链接:入门组算法模板及变形-题单-洛谷入门组算法主要包括以下内容。高精度加减乘除质数筛同余定理二分查找/二分答案哈希结构体排序/贪心前缀和/差分STL-map/stack/queue树和图的遍历选择排序/归并排序dfs/全排列_泛洪算法bfs/一维/二维/记录
- mbedtls学习--大数运算
Yanjing-233
mbedtlsmbedtls安全面试算法
文章目录库文件依赖宏接口示例代码算法分析数位统计读取字符串输出字符串数值比较加减计算乘法运算大数除法取模运算指数运算求取最大公约数模逆运算大数计算,顾名思义,指超出64位的数的乘法运算、指数运算和模逆运算,其中模逆运算,特指求逆元,所谓乘法逆元,例如:2∗9mod17=12*9mod17=12∗9mod17=1则9是2关于模17的逆元(余数为1的被除数)或者2*9与1关于模17同余即:9=2−1m
- 扩展欧几里得算法简介及代码实现
hnjzsyjyj
信息学竞赛#算法数学基础扩展欧几里得算法裴蜀定理
【扩展欧几里得算法简介】●扩展欧几里得算法(ExtendedEuclideanAlgorithm)是欧几里得算法的扩展版本,不仅能计算两个整数的最大公约数(GCD),还能找到满足贝祖等式(Bézout'sIdentity)ax+by=gcd(a,b)的整数解x和y。它在数论、密码学等领域有重要应用,例如求解模的逆元、求解线性同余方程等。●扩展欧几里得算法求ax+by=gcd(a,b)特解的方法如下
- 《夜深人静写算法》数论篇 - (10) 扩展欧几里得定理
英雄哪里出来
《夜深人静写算法》数论篇算法初等数论扩展欧几里得定理
前言 通过扩展欧几里得定理,利用扩展欧几里得算法,可以求解线性同余方程。 那么什么是线性同余方程?什么是扩展欧几里得定理?什么是扩展欧几里得算法?接下来的几篇文章会来讲解一下这几个概念。一、扩展欧几里得定理1、定理概述 对于不都为零的整数aaa和b
- 【数据结构与算法】同余计算 哈希表与前缀和问题特征和模板化思路
4Forsee
散列表数据结构
加减乘负的类同余计算加乘模情况两数和模:(a+b)modm=(amodm+bmodm)modm乘积模:(a*b)modm=((amodm)*(bmodm))modm加模证明如下:a=q1*m+r1,b=q2*m+r2则amodm=r1,bmodm=r2(a+b)modm=((q1+q2)*m+(r1+r2))modm=(r1+r2)modm=(amodm+bmodm)modm结论:两数和模或乘积模
- 初等数论 --- 同余、欧拉定理、费马小定理、求逆元
chstor
算法笔记
文章目录一、同余二、欧拉定理三、费马小定理四、扩展欧几里得算法4.1裴蜀定理五、一元线性同余方程六、逆元求逆元方法一、扩展欧几里得算法求逆元方法二、费马小定理加快速幂一、同余定义当两个整数a,b除以同一个正整数m,若得相同余数,则二整数同余。记为:a≡b(mod m)当两个整数a,b除以同一个正整数m,若得相同余数,则二整数同余。记为:a\equivb(\modm)当两个整数a,b除以同一个正整
- 2025年第十六届蓝桥杯省赛B组Java题解【完整、易懂版】
大熊计算机
赛事/证书蓝桥杯java职场和发展
2025年第十六届蓝桥杯省赛B组Java题解题型概览与整体分析题目编号题目名称题型难度核心知识点通过率(预估)A逃离高塔结果填空★☆☆数学规律、模运算95%B消失的蓝宝结果填空★★★同余定理、中国剩余定理45%C电池分组编程题★★☆异或运算性质70%D魔法科考试编程题★★★素数筛、集合去重60%E爆破编程题★★★☆最小生成树、几何计算40%F数组翻转编程题★★☆贪心、数学分析55%G移动距离结果填
- 数论---求组合数
@松田
算法c++组合数数论
快速幂:数论-----快速幂-CSDN博客快速幂求逆元:数论----快速幂求逆元-CSDN博客筛质数:筛质数----CSDN博客求组合数I//10万组a,busingnamespacestd;constintN=2010,mod=1e9+7;intc[N][N];voidinit(){for(inti=0;i>n;while(n--){inta,b;cin>>a>>b;coutusingnames
- 第十二届蓝桥杯 2021年省赛真题 (Java 大学A组) 第一场
肖有量
java蓝桥杯算法
蓝桥杯2021年省赛真题(Java大学A组)#A相乘朴素解法同余方程#B直线直线方程集合分式消除误差平面几何#C货物摆放暴力搜索缩放质因子#D路径搜索单源最短路径#E回路计数记忆化搜索#F最少砝码变种三进制#G左孩子右兄弟树形DP#H异或数列博弈论#I双向排序去冗操作填数游戏ChthollyTree#J分果果动态规划Placeholder#A相乘本题总分:555分问题描述 小蓝发现,他将111至
- 密码学入门(8):密钥和随机数
海将河推走
密码学入门安全https密钥线性同余法rand
密码学入门(8):密钥和随机数文章目录密码学入门(8):密钥和随机数密钥各种不同的密钥密钥的管理Diffie-Hellman密钥交换密钥派生函数(KDF)随机数随机数的性质伪随机数生成器线性同余法单向散列函数法密码法参考密钥密钥(key)是一个比特序列,但它所具有的价值超乎我们的想象。密钥和明文是等价的,如果密钥落入Eve手里,Eve可以用密钥将密文转换为明文。各种不同的密钥在对称密码中,加密和解
- 逆元的求法
Li_yue_zhen
算法
逆元有三种计算方法,分别是扩展欧几里得、费马小定理推论(快速幂求法)以及线性递推法。一、扩展欧几里得法:1.推导:众所周知,扩展欧几里得是求解二元一次方程的方法。因为逆元的定义为:如果a*b≡1(modp),则:a、b在模p意义下互为逆元。由此,可设k*p+1=a*b。两边同减k*p,得:1=a*b-k*p。因为正负没有关系,所以可以变为a*b+k*p=1。因为我们知道a和p的值,所以可以把这个方
- 了解倒数的概念,乘法逆元就很好理解——解析之【逆元的概念】【逆元的求解方法】
灰阳阳
算法算法裴蜀定理欧几里得算法最大公约数逆元
目录前言一、逆元的概念1、基本定义示例1:a=3,m=7a=3,m=7a=3,m=7示例2:a=2,m=5a=2,m=5a=2,m=52、乘法逆元有什么用3、相关性质二、求解逆元的方法1、费马小定理求乘法逆元定义费马小定理求逆元的方法总结模板题2、扩展欧几里得算法求逆元定义扩展欧几里得算法求逆元的方法总结模板题3、递推公式求逆元定义递推公式的推导示例总结前言首先,下面讨论的是数论相关内容。主要研究
- 【算法】数论基础——逆元的概念与应用 python
查理零世
算法python
文章目录前言一、什么是逆元?二、逆元的存在条件三、如何计算逆元?1.扩展欧几里得算法(ExtendedEuclideanAlgorithm)2.使用费马小定理(Fermat'sLittleTheorem)四、应用场景示例:求排列数和组合数前言逆元(ModularMultiplicativeInverse)在模运算中是一个非常重要的概念,特别是在需要执行除法操作时。因为在模p的情况下,直接进行除法是
- 【学习笔记】exBSGS
Tyih
学习笔记算法
exBSGSax≡b(modp)a^x\equivb\pmodpax≡b(modp)跟BSGS差不多,只是多了ppp可以不为质数这一条件。做法首先你需要知道一个同余方程的性质:给定一个同余式a≡b(modp)a\equivb\pmodpa≡b(modp)。若存在ddd满足d∣a,d∣b,d∣pd|a,d|b,d|pd∣a,d∣b,d∣p,那么则有ad≡bd(modpd)\frac{a}{d}\eq
- 实验一-密码学数学基础
那就摆吧
学习=进步知识密码学
实验一密码学数学基础一、实验目的掌握最大公因数的计算方法,理解其在密码学中的重要性。学习扩展欧几里得算法,能够计算乘法逆元。熟悉模幂运算的方法,了解其在加密和签名算法中的应用。二、实验原理最大公因数最大公因数(GCD)是两个整数的最大公因数,是数论中一个基本概念。在密码学中,计算GCD用于判断两个数是否互素,有以下三种常见方法:暴力穷举法通过列举所有可能的公约数来找到最大公约数。具体操作是依次检查
- 生成随机数的常见方法及其算法原理
NurDroid
算法pythonlinux
一、线性同余生成器(LCG)原理:通过递推公式生成序列,公式为:Xn+1=(aXn+c)mod mX_{n+1}=(aX_n+c)\modmXn+1=(aXn+c)modm其中aaa是乘数,ccc是增量,mmm是模数。随机性取决于参数选择(如a=1103515245,c=12345,m=2^31)。特点:•速度快,但周期较短(最大周期为mmm)。•低位随机性差,通常取高位输出。Python实现:
- 数据结构与算法-数学-基础数学算法(筛质数,最大公约数,最小公倍数,质因数算法,快速幂,乘法逆元,欧拉函数)
一个人在码代码的章鱼
#数学算法学习算法c++数据结构
一:筛质数:1-埃氏筛法该算法核心是从2开始,把每个质数的倍数标记为合数,时间复杂度约为O(nloglogn)。#include#includeusingnamespacestd;constintN=1000010;boolst[N];//标记数组,true表示是合数,false表示是质数voidget_primes(intn){for(inti=2;i>n;get_primes(n);for(i
- 密码学----RSA算法
扬子期
密码学算法
这里写目录标题一、原理二、求解逆元相关习题一、原理参考链接:银行密码系统安全吗?质数(素数)到底有啥用?李永乐老师11分钟讲RSA加密算法二、求解逆元同时视频里还涉及到的是负数的逆元,如何转化为正数。参考链接:扩展欧几里得算法求逆元相关习题在RSA体制中,已知p=5,q=17,加密密钥e=5,请求出解密密钥d,并求出明文m=12对应的密文。
- 中国剩余定理
SweetCode
算法python数据结构
中国剩余定理(ChineseRemainderTheorem)详解:从原理到代码实现在数论和计算机科学中,中国剩余定理(CRT)是一种处理多个模运算方程组的强大工具,它不仅用于解线性同余方程组,还广泛应用于密码学、RSA算法、信号处理等领域。本文将从原理讲起,结合例子逐步深入,并提供可运行的代码实现。一、什么是中国剩余定理?中国剩余定理是关于整数同余方程组求解的一条基本定理,它的基本形式如下:定理
- 模运算核心性质与算法应用:从数学原理到编程实践
EnigmaCoder
算法算法
目录前言数学性质:模运算的理论基石基本定义:余数的本质四则运算规则:保持同余性的关键编程实践:模运算的工程化技巧避免数值溢出:分步取模是关键处理负数取模:确保结果非负大数幂取模:快速幂算法组合数取模:预计算阶乘与逆元常见问题解决方案:一张表帮你避坑总结:模运算的核心价值前言大家好!我是EnigmaCoder。在算法设计与数论问题中,模运算(ModuloOperation)是处理大数、周期性问题和哈
- RSA非对称加密算法深度解析与技术实现指南
安全
一、密码学基础与RSA背景RSA算法(Rivest-Shamir-Adleman)是首个实用的非对称加密体系,由MIT学者于1977年提出。其数学基础建立在大数分解难题和欧拉定理之上,核心思想是利用模指数运算构造单向陷门函数。数学预备知识:欧拉函数φ(n):小于n且与n互质的正整数数量贝祖定理:gcd(a,b)=ax+by的解存在性模逆元:a·a⁻¹≡1modn的解存在条件费马小定理:a^(p-1
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分