1.显存占用问题
由于tensorflow在训练时默认指定所有GPU的显存,使用tensorflow后端的keras亦如此
注:虽然占用了所有GPU的显存,但实际使用只有指定的GPU。----------(占着不用)
(1)禁用gpu
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
(2)指定gpu
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
(3)同时指定GPU和显存占用比例
import os
import tensorflow as tf
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.8
set_session(tf.Session(config=config))
2.将训练结果保存为csv格式
hist = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test),
callbacks=[ModelCheckpoint('weights/imdb_indrnn_mnist.h5', monitor='val_acc', save_best_only=True, save_weights_only=True, mode='max')])
log = pd.DataFrame(hist.history)
log.to_csv('log.csv')
3.学习率衰减
参考keras官方文档
ReduceLROnPlateau
keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.001)
model.fit(X_train, Y_train, callbacks=[reduce_lr])
自定义learning rate(参考https://blog.csdn.net/xiaojiajia007/article/details/77278315)
from keras.callbacks import LearningRateScheduler
def scheduler(epoch):
if epoch%2==0 and epoch!=0:
lr = K.get_value(model.optimizer.lr)
K.set_value(model.optimizer.lr, lr*.9)
print("lr changed to {}".format(lr*.9))
return K.get_value(model.optimizer.lr)
lr_decay = LearningRateScheduler(scheduler)
model.fit_generator(train_gen, (nb_train_samples//batch_size)*batch_size,
nb_epoch=100, verbose=1,
validation_data=valid_gen, nb_val_samples=val_size,
callbacks=[lr_decay])
4.保存权重和保存模型
由于直接保存模型(含权重)往往文件太大,一般我们采用保存权重的方法
(1)保存模型+权重
你可以使用model.save(filepath)
将Keras模型和权重保存在一个HDF5文件中,该文件将包含:
使用keras.models.load_model(filepath)
来重新实例化你的模型,如果文件中存储了训练配置的话,该函数还会同时完成模型的编译
from keras.models import load_model
model.save('my_model.h5') # creates a HDF5 file 'my_model.h5'
del model # deletes the existing model
# returns a compiled model
# identical to the previous one
model = load_model('my_model.h5')
(2)仅保存权重
model.save_weights('my_model_weights.h5')
model.load_weights('my_model_weights.h5')