keras 一些tips

 

1.显存占用问题

由于tensorflow在训练时默认指定所有GPU的显存,使用tensorflow后端的keras亦如此

注:虽然占用了所有GPU的显存,但实际使用只有指定的GPU。----------(占着不用)

        (1)禁用gpu  

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

        (2)指定gpu

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

        (3)同时指定GPU和显存占用比例

import os
import tensorflow as tf
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.8
set_session(tf.Session(config=config))

2.将训练结果保存为csv格式

hist = model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=epochs,
          verbose=1,
          validation_data=(x_test, y_test),
          callbacks=[ModelCheckpoint('weights/imdb_indrnn_mnist.h5', monitor='val_acc', save_best_only=True, save_weights_only=True, mode='max')])
log = pd.DataFrame(hist.history)
log.to_csv('log.csv')

3.学习率衰减

参考keras官方文档

ReduceLROnPlateau

keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0)

reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.001)
model.fit(X_train, Y_train, callbacks=[reduce_lr])

自定义learning rate(参考https://blog.csdn.net/xiaojiajia007/article/details/77278315)

from keras.callbacks import LearningRateScheduler
def scheduler(epoch):
    if epoch%2==0 and epoch!=0:
        lr = K.get_value(model.optimizer.lr)
        K.set_value(model.optimizer.lr, lr*.9)
        print("lr changed to {}".format(lr*.9))
    return K.get_value(model.optimizer.lr)
 
lr_decay = LearningRateScheduler(scheduler)
 
model.fit_generator(train_gen, (nb_train_samples//batch_size)*batch_size,
                  nb_epoch=100, verbose=1,
                  validation_data=valid_gen,    nb_val_samples=val_size,
                  callbacks=[lr_decay])

4.保存权重和保存模型

由于直接保存模型(含权重)往往文件太大,一般我们采用保存权重的方法

(1)保存模型+权重

你可以使用model.save(filepath)将Keras模型和权重保存在一个HDF5文件中,该文件将包含:

  • 模型的结构,以便重构该模型
  • 模型的权重
  • 训练配置(损失函数,优化器等)
  • 优化器的状态,以便于从上次训练中断的地方开始

使用keras.models.load_model(filepath)来重新实例化你的模型,如果文件中存储了训练配置的话,该函数还会同时完成模型的编译

from keras.models import load_model
 
model.save('my_model.h5')  # creates a HDF5 file 'my_model.h5'
del model  # deletes the existing model
 
# returns a compiled model
# identical to the previous one
model = load_model('my_model.h5')

(2)仅保存权重

model.save_weights('my_model_weights.h5')
model.load_weights('my_model_weights.h5')


 

你可能感兴趣的:(keras)