OpenRisc-35-基于orpsoc,eCos的sd card controller的测试实验

引言

之前,曾经在orpsoc的平台上,测试验证过其sd card controller的linux的驱动,但是并不是很完美,经过努力,终于在eCos下完成了其全部功能的验证,包括驱动层验证,文件系统的挂载,应用层的创建文件,打开文件,复制文件,源文件与复制文件的比较等,此外,还有创建目录,切换目录等操作。

本小节就分享一下整个验证过程。

关于基于orpsoc+linux下的sd card controller验证,请参考:

http://blog.csdn.net/rill_zhen/article/details/9111213


关于linux下的SD卡驱动,请参考:

http://blog.csdn.net/rill_zhen/article/details/9419651

1,硬件部分

1>基本信息

本次验证,采用的是最初的orpsoc的硬件结构,没有进行任何改动,唯一做的工作就是将硬件配置信息提前烧到了外部的spi-flash,每次上电可自动执行,省去每次调试前的FPGA配置工作。

关于如何烧写外部spi-flash,请参考:http://blog.csdn.net/rill_zhen/article/details/9162275

此外,需要了解sd卡控制器这个ipcore的一些信息,比如wishbone地址等,也在之前的blog中做过介绍,这里不再赘述。


2>sd card controller的仿真

关于ipcore的仿真,之前也做过很多实验,如果有什么问题,可以先参考之前的内容,或者写评论给我,我会尽快回答。这里只给出仿真波形和仿真输出信息。如下:

1》仿真波形

OpenRisc-35-基于orpsoc,eCos的sd card controller的测试实验_第1张图片


2》仿真信息

可以看出,有一个错误。但我觉得不影响使用。

# T0 Start
#  
# access_to_reg TEST
#   Time: 925
#   TEST 0: 3 32-BIT READ-WRITE REGISTERS ( VARIOUS BUS DELAYS )
# 
# ===========================================================================
# T0 test_access_to_reg Completed
# ===========================================================================
# T1 Start
#  
# test_send_cmd TEST
#   Time: 4435
#   TEST 0: 0:  Send CMD, No Response  
# 
# ===========================================================================
# T1 test_send_cmd Completed
# ===========================================================================
# T2 Start
#  
# access_to_reg TEST
#   Time: 8153
#   TEST 3.0: 0:  Init Seq, No Response  
# V 1.0 Card, Timeout In TEST 3.0 00008004
# CID reg 1: ffffffdd
# RCA Response: 20000700
# RCA Nr for data transfer: 00002000
# 
# ===========================================================================
# T2 test_init_sequence Completed
# ===========================================================================
# T3 Start
#  
# access_to_reg TEST
#   Time: 61583
#   TEST 4.0:   Send data  
# V 1.0 Card, Timeout In TEST 4.0 00008004
# CID reg 1: ffffffdd
# RCA Response: 20000700
# RCA Nr for data transfer: 00002000
#           2**BUS WIDTH 4 
# Card status after Bus width set 00000920
# 
# ===========================================================================
# T3 test_send_data Completed
# ===========================================================================
# T4 Start
#   Time: 208639
#   TEST 4.0:   Send data  
# V 1.0 Card, Timeout In TEST 4.0 00008004
# CID reg 1: ffffffdd
# RCA Response: 20000700
# RCA Nr for data transfer: 00002000
#           2**BUS WIDTH 4 
# Card status after Bus width set 00000920
# 
# ===========================================================================
# T4 test_send_rec_data Completed
# ===========================================================================
# T5 Start
#  
# test_send_cmd_error_rsp
#   Time: 416327
#   TEST 5 part 0: Send CMD, No Response  
#   Time: 419969
#   TEST 5, part 1:  Send CMD, 48-Bit Response, No error check   
#   Time: 426521
#   TEST 5, part 2:   Send CMD3, 48-Bit Response, All Error check  enable   
#   Time: 433177
# Bus error succesfully catched, Error status register: 0000000a
#   Time: 433177
#   Test 5 part 4:  Send CMD2, 136-Bit    
# 
# ===========================================================================
# T5 test_send_cmd_error_rsp Complete
# ===========================================================================
#  
# access_to_reg TEST
#   Time: 444277
#   TEST 4.0:   Send data  
# V 1.0 Card, Timeout In TEST 4.0 00008004
# CID reg 1: ffffffdd
# RCA Response: 20000700
# RCA Nr for data transfer: 00002000
#           2**BUS WIDTH 4 
# Card status after Bus width set 00000920
# T6 test_send_cmd_error_rsp Complete
# All Test finnished. Nr Failed:           0, Nr Succes:           7



2,软件部分

1>与上次的比较

本次验证和上次验证的最大不同是软件。

首先,OS变了,上次采用的是linux,SD controller的驱动也是参考ipcore附带的testbench,ipcore附带的裸机程序,经过自己整理,变换,最后完成的linux下的驱动。

其次,测试程序也变了,上次只在linux驱动层进行了测试,这次不仅进行了driver的测试,还进行了应用层的测试。

最后,验证形式也变了,上次只是进行了基本的I/O验证,这次验证包括了文件系统,是文件级的测试。


2>验证准备

首先要搭建eCos运行环境,请参考:http://blog.csdn.net/rill_zhen/article/details/9271721

其次是搭建ORPSoC的调试环境,请参考:http://blog.csdn.net/rill_zhen/article/details/8700937


3>软件编码

1》编写基于eCos的sd卡控制器的driver

此驱动已经在eCos工程内,路径是:eCos/packages/devs/disk/opencores/sdcmsc/current/src/if_sdcmsc.c

为了更清楚,更真实的展示验证过程,在里面增加调试信息,修改后,代码请参考附录。


2》修改eCos中关于fatfs部分的代码

eCos本身的fatfs部分有一些问题,如果不修改的话,在测试程序将无法挂载sd卡的文件系统。

在这之前,有必要梳理一下mount()函数的执行过程,如下:

a,应用程序的mount()

如下便是测试程序的部分代码:

这里需要说明的是,mount的第一个参数,必须和驱动中注册的设备名称一致。

OpenRisc-35-基于orpsoc,eCos的sd card controller的测试实验_第2张图片


b,eCos中mount()函数的实现入口,misc.cxx:mount()

之前说过,eCos只是一个库,并不是一个platform,所以应用程序和eCos在逻辑上是平等的,既然应用程序mount()返回错误,那么我们需要查找其具体实现。


如下图:

OpenRisc-35-基于orpsoc,eCos的sd card controller的测试实验_第3张图片


c,mount()对应的具体文件系统的mount实现入口,fatfs.c:fatfs_mount()

这里需要说明的有两点:

第一,fatfs_mount()会首先调用cyg_io_lookup()函数,而这个函数最终会调用驱动(if_sdcmsc.c)中的sdcmsc_disk_loopup()函数,sdcmsc_disk_loopup()函数会调用sdcmsc_disk_init(),实现SD卡的初始化工作,也就是上次基于linux的验证时,给SD卡发送一连串的命令。

第二,fatfs_mount()会调用cyg_io_lookup()函数之后,会调用fatfs_init()函数,fatfs_init()函数会首先调用read_boot_record()函数,这个函数会读取FATFS的格式化信息。


如下图:

OpenRisc-35-基于orpsoc,eCos的sd card controller的测试实验_第4张图片

d,读取boot record信息,fatfs_supp.c:fatfs_init()

eCos就是在这里出现了问题!eCos默认是从SD卡的第0个sector读取boot record,但是并不是所有的SD卡的文件系统格式化信息都存在那里,所以,如果你的SD卡的文件系统信息没有存在第0个sector,eCos就无法挂载。很不幸,我用的SD卡的fat fs的boot record 信息就不在第0个sector,所以一直无法挂载,出现“invalid argument”的错误。

如果想让eCos能读到boot record信息,需要修改读取地址。如何知道你的SD卡的boot record信息的起始地址在哪里呢?可以下载安装winhex这个软件来查看,安装完成后,将SD卡通过读卡器插到电脑上,打开winhex的tool->open disk,选择你的SD卡,就可以看到文件系统的格式化信息。

我的SD卡的boot record信息在第135个sector,起始地址是0x10e00,eCos里面的地址是0,所以肯定读不到正确的值,无法挂载也就可以理解了。


winhex我已上传:http://download.csdn.net/detail/rill_zhen/5776013

关于fat fs的格式化信息,请参考:http://averstak.tripod.com/fatdox/bootsec.htm#ef


fatfs_init(),如下图:

OpenRisc-35-基于orpsoc,eCos的sd card controller的测试实验_第5张图片


read_boot_record(),如下图:这里需要修改!

OpenRisc-35-基于orpsoc,eCos的sd card controller的测试实验_第6张图片

上面是手工指定bootrecord的地址,这样会有问题,可能对于不同的SD卡,其bootrecord的地址是不同的,所以这样修改只能对一个SD卡有效,显然是不行的。如何能兼容所有SD卡呢,其实在第0个sector有一个地方(0x01c6)就存有relative sectors,这个值就是bootrecord的相对sector数量,获得相对地址只需要将这个值乘以sector大小即可。

更多内容请参考:https://en.wikipedia.org/wiki/Master_boot_record    或者: http://blog.chinaunix.net/uid-22915173-id-597702.html

改进代码如下:

需要注意的是从0x01c6开始读到的四个字节是大端的,所以我们需要做一下byteorder的转换。

OpenRisc-35-基于orpsoc,eCos的sd card controller的测试实验_第7张图片



boot record的结构体,如下图:

OpenRisc-35-基于orpsoc,eCos的sd card controller的测试实验_第8张图片

e,code list

请参考附录部分的内容。


3,验证

验证过程是简单的。

1>配置eCos

要进行本次验证,需要增加5个package。执行如下操作:

如下所示:

1》增加依赖包:

ecosconfig new orpsoc default
ecosconfig add CYGPKG_IO_DISK
ecosconfig add CYGPKG_IO_FILEIO
ecosconfig add CYGPKG_FS_FAT
ecosconfig add CYGPKG_BLOCK_LIB
ecosconfig add CYGPKG_LINUX_COMPAT

2》检查冲突,要没有冲突才行

ecosconfig check

3》编译

ecosconfig tree

make

4》编译测试

make tests


2>编译测试文件

到测试文件所在目录,执行make即可。

如果有问题,请参考:http://blog.csdn.net/rill_zhen/article/details/9271721


3>下载验证

将生成的测试文件,通过or32-elf-gdb烧到板子上。

当然,如果你的板子的硬件配置没有事先烧到spi-flash里面,需要用jtag将orpsoc_top.svf 烧到板子上。

这一步的具体操作过程,之前也有介绍,这里不再赘述。


4,验证结果

如果一切顺利,你会看到如下打印信息。

从中可以看出,我的SD卡是FAT16格式的,卡的capacity是1.9G左右,mount成功,可以read,write文件。

OpenRisc-35-基于orpsoc,eCos的sd card controller的测试实验_第9张图片OpenRisc-35-基于orpsoc,eCos的sd card controller的测试实验_第10张图片OpenRisc-35-基于orpsoc,eCos的sd card controller的测试实验_第11张图片


打印信息如下:


openrisc@openrisc-VirtualBox:~/share/ecos_sdc_test$ picocom --b 115200 --p n --d 8 --f xon /dev/ttyUSB2
picocom v1.4

port is        : /dev/ttyUSB2
flowcontrol    : xon/xoff
baudrate is    : 115200
parity is      : none
databits are   : 8
escape is      : C-a
noinit is      : no
noreset is     : no
nolock is      : no
send_cmd is    : ascii_xfr -s -v -l10
receive_cmd is : rz -vv

Terminal ready
is_v20:0x1
is_sdhc:0x0
rca:0xe6240000
card capacity:0x3af000
sdc init success!
data:0x2dbe8
fatfs boot record:--->
sig:0x29
marker0:0x55
marker1:0xaa
jump:0x3ceb
oem_name[0]:M
oem_name[1]:S
oem_name[2]:D
oem_name[3]:O
oem_name[4]:S
oem_name[5]:5
oem_name[6]:.
oem_name[7]:0
bytes_per_sec:0x200
sec_per_clu:0x40
res_sec_num:0x8
fat_tbls_num:0x2
max_root_dents:0x200
sec_num_32:0x0
media_desc:0xf8
sec_per_fat:0xec
sec_per_track:0x3f
heads_num:0xff
hsec_num:0x87
sec_num:0x3ae039
sec_num_32:0x0
sec_num_32:0x0
marker0:0x55
marker1:0xaa
sec_per_fat_32:0x290f4
ext_flags:0x2
fs_ver:0x836c
root_cluster:0x0
fs_info_sec:0x2
bk_boot_sec:0xdc5c
drv_num:0x80
ext_sig:0x29
ser_num:0x6eef0577
vol_name[0]:N
vol_name[1]:O
vol_name[2]: 
vol_name[3]:N
vol_name[4]:A
vol_name[5]:M
vol_name[6]:E
vol_name[7]: 
vol_name[8]: 
vol_name[9]: 
vol_name[10]: 
fat_name[0]:F
fat_name[1]:A
fat_name[2]:T
fat_name[3]:1
fat_name[4]:6
fat_name[5]: 
fat_name[6]: 
fat_name[7]: 
mount ok!
chdir ok!
: reading directory /
: entry           RILL [mode 00000008 ino 00000009 nlink 1 size 10]
: entry            FOO [mode 00000008 ino 00000003 nlink 1 size 10]
: entry            FEE [mode 00000008 ino 00000004 nlink 1 size 10]
: entry        FP_FILE [mode 00000008 ino 00000008 nlink 1 size 10]
: create file /mkg_rill size 10 
: check file mkg_rill
: copy file mkg_rill -> mkg_rill_bak
: check file mkg_rill_bak
: compare files mkg_rill_bak == /mkg_rill
buf1[0](00) == buf2[0](00)
buf1[1](01) == buf2[1](01)
buf1[2](02) == buf2[2](02)
buf1[3](03) == buf2[3](03)
buf1[4](04) == buf2[4](04)
buf1[5](05) == buf2[5](05)
buf1[6](06) == buf2[6](06)
buf1[7](07) == buf2[7](07)
buf1[8](08) == buf2[8](08)
buf1[9](09) == buf2[9](09)
PASS:
EXIT:




5,小结

经过努力,基于ORPSoC的SD卡控制器的验证工作终于可以告一段落了。通过目前的工作,有如下收获:

首先,证明了opencores上面的这个sd卡控制器的硬件是没有问题的。

其次,ORPSoC对这个ipcore的集成,也是没问题的。

第三,得到了一个可以work的SD卡控制器的基于eCos的驱动。


6,future work

1,将if_sdcmsc.c移植到linux上,实现SD卡的基本I/O操作。

2,基于linux系统,实现SD卡文件系统的挂载。



7,附录 code list

1>驱动:if_sdcmsc.c


//=========================================================================
//
//      if_sdcmsc.c
//
//      Provide a disk device driver for SDCard Mass Storage Controller
//
//==========================================================================
// ####ECOSGPLCOPYRIGHTBEGIN####                                            
// -------------------------------------------                              
// This file is part of eCos, the Embedded Configurable Operating System.   
// Copyright (C) 2004, 2006 Free Software Foundation, Inc.                  
//
// eCos is free software; you can redistribute it and/or modify it under    
// the terms of the GNU General Public License as published by the Free     
// Software Foundation; either version 2 or (at your option) any later      
// version.                                                                 
//
// eCos is distributed in the hope that it will be useful, but WITHOUT      
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or    
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License    
// for more details.                                                        
//
// You should have received a copy of the GNU General Public License        
// along with eCos; if not, write to the Free Software Foundation, Inc.,    
// 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.            
//
// As a special exception, if other files instantiate templates or use      
// macros or inline functions from this file, or you compile this file      
// and link it with other works to produce a work based on this file,       
// this file does not by itself cause the resulting work to be covered by   
// the GNU General Public License. However the source code for this file    
// must still be made available in accordance with section (3) of the GNU   
// General Public License v2.                                               
//
// This exception does not invalidate any other reasons why a work based    
// on this file might be covered by the GNU General Public License.         
// -------------------------------------------                              
// ####ECOSGPLCOPYRIGHTEND####                                              
//==========================================================================
//#####DESCRIPTIONBEGIN####
//
// Author:       Piotr Skrzypek
// Date:         2012-05-01
//
//####DESCRIPTIONEND####
//==========================================================================

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

// Settings exported from CDL
#include 

// SDCMSC address space
#define SDCMSC_BASE 0x9e000000

// Register space
#define SDCMSC_ARGUMENT           0x00
#define SDCMSC_COMMAND            0x04
#define SDCMSC_CARD_STATUS        0x08
#define SDCMSC_RESPONSE           0x0C
#define SDCMSC_CONTROLLER_SETTING 0x1C
#define SDCMSC_BLOCK_SIZE         0x20
#define SDCMSC_POWER_CONTROL      0x24
#define SDCMSC_SOFTWARE_RESET     0x28
#define SDCMSC_TIMEOUT            0x2C
#define SDCMSC_NORMAL_INT_STATUS  0x30
#define SDCMSC_ERROR_INT_STATUS   0x34
#define SDCMSC_NORMAL_INT_ENABLE  0x38
#define SDCMSC_ERROR_INT_ENABLE   0x3C
#define SDCMSC_CAPABILITY         0x48
#define SDCMSC_CLOCK_DIVIDER      0x4C
#define SDCMSC_BD_BUFFER_STATUS   0x50
#define SDCMSC_DAT_INT_STATUS     0x54
#define SDCMSC_DAT_INT_ENABLE     0x58
#define SDCMSC_BD_RX              0x60
#define SDCMSC_BD_TX              0x80

// SDCMSC_COMMAND bits
#define SDCMSC_COMMAND_CMDI(x) (x << 8)
#define SDCMSC_COMMAND_CMDW(x) (x << 6)
#define SDCMSC_COMMAND_CICE    0x10
#define SDCMSC_COMMAND_CIRC    0x08
#define SDCMSC_COMMAND_RTS_48  0x02
#define SDCMSC_COMMAND_RTS_136 0x01

//SDCMSC_CARD_STATUS bits
#define SDCMSC_CARD_STATUS_CICMD 0x01

// SDCMSC_NORMAL_INT_STATUS bits
#define SDCMSC_NORMAL_INT_STATUS_EI 0x8000
#define SDCMSC_NORMAL_INT_STATUS_CC 0x0001

// SDCMSC_DAT_INT_STATUS
#define SDCMSC_DAT_INT_STATUS_TRS 0x01

typedef struct cyg_sdcmsc_disk_info_t {
	int is_v20;
	int is_sdhc;
	cyg_uint32 rca;
	int connected;
} cyg_sdcmsc_disk_info_t;

static int sdcmsc_card_cmd(cyg_uint32 cmd, 
			   cyg_uint32 arg, 
			   cyg_uint32 *response) {

	// Send command to card
	HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_COMMAND, cmd);
	HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_ARGUMENT, arg);

	// Wait for response
	cyg_uint32 reg;
	cyg_uint32 mask = SDCMSC_NORMAL_INT_STATUS_EI | 
			  SDCMSC_NORMAL_INT_STATUS_CC;

	do {
		HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_NORMAL_INT_STATUS, reg);
	} while(!(reg & mask));
	HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_NORMAL_INT_STATUS, 0);

	// Optionally read response register
	if(response) {
		HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_RESPONSE, *response);
	}

	// Check for errors
	if(reg & SDCMSC_NORMAL_INT_STATUS_EI) {
		HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_ERROR_INT_STATUS, reg);
		if(reg & (1 << 3)) diag_printf("Command index error\n");
		if(reg & (1 << 1)) diag_printf("Command CRC error\n");
		if(reg & (1 << 0)) diag_printf("Command timeout\n");
		HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_ERROR_INT_STATUS, 0);
		return 0;
	}
	else {
		return 1;
	}
}

// Card initialization and identification implemented according to
// Physical Layer Simplified Specification Version 3.01
static int sdcmsc_card_init(cyg_sdcmsc_disk_info_t *data,
			    char *serial,
			    char *firmware_rev,
			    char *model_num,
			    cyg_uint32 *capacity) {

	cyg_uint32 reg;
	cyg_uint32 cmd;
	cyg_uint32 arg;

	// Send CMD0 to switch the card to idle state
	cmd = SDCMSC_COMMAND_CMDI(0);
	if(!sdcmsc_card_cmd(cmd, 0, NULL)) return 0;

	// Send CMD8 offering 2.7V to 3.6V range
	// If the card doesn't responde it means either:
	// 1. Card supports v2.0 but can't communicate using
	//    current voltage levels
	// 2. Card does not support v2.0
	cmd = SDCMSC_COMMAND_CMDI(8) | 
	      SDCMSC_COMMAND_CICE |
	      SDCMSC_COMMAND_CIRC |
	      SDCMSC_COMMAND_RTS_48;
	data->is_v20 = sdcmsc_card_cmd(cmd, 0x1AA, NULL);
	diag_printf("is_v20:0x%x\n",data->is_v20);//rill add debug
	do {
		HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_CARD_STATUS, reg);
	} while(reg & SDCMSC_CARD_STATUS_CICMD);

	// Repeat ACMD41 until card set the busy bit to 1
	// Since ACMD is an extended command, it must be preceded
	// by CMD55
	do {
		cmd = SDCMSC_COMMAND_CMDI(55) | 
		      SDCMSC_COMMAND_CICE |
		      SDCMSC_COMMAND_CIRC |
		      SDCMSC_COMMAND_RTS_48;
		if(!sdcmsc_card_cmd(cmd, 0, NULL)) return 0;

		cmd = SDCMSC_COMMAND_CMDI(41) |
		      SDCMSC_COMMAND_RTS_48;
		arg = data->is_v20 ? 
		      0x40FF8000 : 
		      0x00FF8000;
		if(!sdcmsc_card_cmd(cmd, arg, ®)) return 0;

	} while(!(reg & 0x80000000));

	data->is_sdhc = !!(reg & 0x40000000);
	diag_printf("is_sdhc:0x%x\n",data->is_sdhc);
	// Issue CMD2 to switch from ready state to ident. Unfortunately, it is
	// not possible to read whole CID because the command can be issued only
	// once, and the peripheral can store only 32bit of the command at once.
	cmd = SDCMSC_COMMAND_CMDI(2) |
	      SDCMSC_COMMAND_RTS_136;
	if(!sdcmsc_card_cmd(cmd, 0, NULL)) return 0;

	// Issue CMD3 to get RCA and switch from ident state to stby.
	cmd = SDCMSC_COMMAND_CMDI(3) |
	      SDCMSC_COMMAND_CICE |
	      SDCMSC_COMMAND_CIRC |
	      SDCMSC_COMMAND_RTS_48;
	if(!sdcmsc_card_cmd(cmd, 0, ®)) return 0;
	data->rca = reg & 0xFFFF0000;
	diag_printf("rca:0x%x\n",data->rca);
	// Calculate card capacity. Use information stored in CSD register.
	cyg_uint32 card_capacity;
	if(data->is_sdhc) {
		cmd = SDCMSC_COMMAND_CMDI(9) |
		      SDCMSC_COMMAND_CMDW(1) |
		      SDCMSC_COMMAND_RTS_136;
		if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0;
		card_capacity = reg & 0x3F;
		card_capacity <<= 16;

		cmd = SDCMSC_COMMAND_CMDI(9) |
		      SDCMSC_COMMAND_CMDW(2) |
		      SDCMSC_COMMAND_RTS_136;
		if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0;
		reg >>= 16;
		card_capacity |= reg;
		card_capacity += 1;
		card_capacity *= 1000;
	}
	else {
		cmd = SDCMSC_COMMAND_CMDI(9) |
		      SDCMSC_COMMAND_CMDW(1) |
		      SDCMSC_COMMAND_RTS_136;
		if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0;
		cyg_uint32 read_bl_len = (reg >> 16) & 0x0F;
		cyg_uint32 c_size = reg & 0x3FF;
		c_size <<= 2;

		cmd = SDCMSC_COMMAND_CMDI(9) |
		      SDCMSC_COMMAND_CMDW(2) |
		      SDCMSC_COMMAND_RTS_136;
		if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0;
		c_size |= (reg >> 30) & 0x03;
		cyg_uint32 c_size_mult = (reg >> 15) & 0x07;
		card_capacity = c_size + 1;
		card_capacity *= 1 << (c_size_mult + 2);
		card_capacity *= 1 << (read_bl_len);
		card_capacity >>= 9;
	}
	diag_printf("card capacity:0x%x\n",card_capacity);
	// Fill disk identification struct using information in CID register
	// use OEM/APPlication ID field to fill model_num,
	// Product revision field to fill firmware_rev,
	// and Product serial number to field to fill serial
	cmd = SDCMSC_COMMAND_CMDI(10) |
	      SDCMSC_COMMAND_CMDW(0) |
	      SDCMSC_COMMAND_RTS_136;
	if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0;
	model_num[0] = (reg >> 16) & 0xFF;
	model_num[1] = (reg >> 8) & 0xFF;
	model_num[2] = 0;

	cmd = SDCMSC_COMMAND_CMDI(10) |
	      SDCMSC_COMMAND_CMDW(2) |
	      SDCMSC_COMMAND_RTS_136;
	if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0;
	firmware_rev[0] = (reg >> 24) & 0xFF;
	firmware_rev[1] = 0;
	serial[0] = (reg >> 16) & 0xFF;
	serial[1] = (reg >> 8) & 0xFF;
	serial[2] = reg & 0xFF;

	cmd = SDCMSC_COMMAND_CMDI(10) |
	      SDCMSC_COMMAND_CMDW(3) |
	      SDCMSC_COMMAND_RTS_136;
	if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0;
	serial[3] = (reg >> 24) & 0xFF;

	// Put card in transfer state 
	cmd = SDCMSC_COMMAND_CMDI(7) |
	      SDCMSC_COMMAND_CICE |
	      SDCMSC_COMMAND_CIRC |
	      SDCMSC_COMMAND_RTS_48;
	if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0;
	if(reg != 0x700) return 0;

	// Set block size to 512
	cmd = SDCMSC_COMMAND_CMDI(16) |
	      SDCMSC_COMMAND_CICE |
	      SDCMSC_COMMAND_CIRC |
	      SDCMSC_COMMAND_RTS_48;
	if(!sdcmsc_card_cmd(cmd, 512, NULL)) return 0;

	// Set 4-bits bus mode
	cmd = SDCMSC_COMMAND_CMDI(55) |
	      SDCMSC_COMMAND_CICE |
	      SDCMSC_COMMAND_CIRC |
	      SDCMSC_COMMAND_RTS_48;
	if(!sdcmsc_card_cmd(cmd, data->rca, NULL)) return 0;

	cmd = SDCMSC_COMMAND_CMDI(6) |
	      SDCMSC_COMMAND_CICE |
	      SDCMSC_COMMAND_CIRC |
	      SDCMSC_COMMAND_RTS_48;
	if(!sdcmsc_card_cmd(cmd, 0x02, NULL)) return 0;
	diag_printf("sdc init success!\n");
	return 1;
}

static int sdcmsc_card_queue(cyg_sdcmsc_disk_info_t *data, 
			int direction_transmit,
			int block_addr,
			cyg_uint32 buffer_addr) {

        // SDSC cards use byte addressing, while SDHC use block addressing.
        // It is therefore required to multiply the address by 512 if
        // we are dealing with SDSC card, to remain compatible with the API.
	if(!data->is_sdhc) {
		block_addr <<= 9;
	}

	if(direction_transmit) {
		HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_BD_TX, buffer_addr);
		HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_BD_TX, block_addr);
	}
	else {
		HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_BD_RX, buffer_addr);
		HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_BD_RX, block_addr);
	}

	// Now wait for the response
	cyg_uint32 reg;
	do {
		HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_DAT_INT_STATUS, reg);
	} while(!reg);
	HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_DAT_INT_STATUS, 0);

	// Check for errors
	if(reg == SDCMSC_DAT_INT_STATUS_TRS) {
		return 1;
	}
	else {
		if(reg & (1 << 5)) diag_printf("Transmission error\n");
		if(reg & (1 << 4)) diag_printf("Command error\n");
		if(reg & (1 << 2)) diag_printf("FIFO error\n");
		if(reg & (1 << 1)) diag_printf("Retry error\n");
		return 0;
	}
}

// This is an API function. Is is called once, in the beginning
static cyg_bool sdcmsc_disk_init(struct cyg_devtab_entry* tab) {

	// Set highest possible timeout
	HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_TIMEOUT, 0xFFFE);

	// Reset the peripheral
	HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_SOFTWARE_RESET, 1);
	HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_CLOCK_DIVIDER, 2);
	HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_SOFTWARE_RESET, 0);

	// Call upper level
	disk_channel* ch = (disk_channel*) tab->priv;
	return (*ch->callbacks->disk_init)(tab);
}

// This function is called when user mounts the disk
static Cyg_ErrNo sdcmsc_disk_lookup(struct cyg_devtab_entry** tab, 
				    struct cyg_devtab_entry *sub_tab, 
				    const char* name) {

	disk_channel *ch = (disk_channel*) (*tab)->priv;
	cyg_sdcmsc_disk_info_t *data = (cyg_sdcmsc_disk_info_t*) ch->dev_priv;

	// If the card was not initialized yet, it's time to do it
	// and call disk_connected callback
	if(!data->connected) {

		cyg_disk_identify_t id;

		// Pass dummy CHS geometry and hope the upper level 
		// will use LBA mode. To guess CHS we would need to
		// analyze partition table and confront LBA and CHS
		// addresses. And it would work only if proper LBA
		// field is stored in MBR. Is is definitely something
		// that should be done by upper level.
		id.cylinders_num = 1;
		id.heads_num = 1;
		id.sectors_num = 1;

		id.phys_block_size = 1;
		id.max_transfer = 512;

		// Initialize the card
		data->connected = sdcmsc_card_init(data,
						   id.serial,
						   id.firmware_rev,
						   id.model_num,
						   &id.lba_sectors_num);

		if(data->connected) {
			// Let upper level know there is a new disk
			(*ch->callbacks->disk_connected)(*tab, &id);
		}
	}

	// Call upper level
	return (*ch->callbacks->disk_lookup)(tab, sub_tab, name);
}

// API function to read block from the disk
static Cyg_ErrNo sdcmsc_disk_read(disk_channel* ch, 
				  void* buf, 
				  cyg_uint32 blocks, 
				  cyg_uint32 first_block) {

	cyg_sdcmsc_disk_info_t *data = (cyg_sdcmsc_disk_info_t*) ch->dev_priv;

	int i;
	int result;
	cyg_uint32 reg;
	for(i = 0; i < blocks; i++) {

		// Check for free receive buffers
		HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_BD_BUFFER_STATUS, reg);
		reg >>= 8;
		reg &= 0xFF;
		if(reg == 0) {
			return -EIO;
		}

		result = sdcmsc_card_queue(data, 0, first_block, (cyg_uint32) buf);
		if(!result) {
			return -EIO;
		}
	}

	return ENOERR;

}

// API function to write block to disk
static Cyg_ErrNo sdcmsc_disk_write(disk_channel* ch, 
				   const void* buf, 
				   cyg_uint32 blocks, 
				   cyg_uint32 first_block) {

	cyg_sdcmsc_disk_info_t *data = (cyg_sdcmsc_disk_info_t*) ch->dev_priv;

	int i;
	int result;
	cyg_uint32 reg;
	for(i = 0; i < blocks; i++) {

		// Check for free transmit buffers
		HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_BD_BUFFER_STATUS, reg);
		reg &= 0xFF;
		if(reg == 0) {
			return -EIO;
		}

		result = sdcmsc_card_queue(data, 1, first_block, (cyg_uint32) buf);
		if(!result) {
			return -EIO;
		}
	}

	return ENOERR;

}

// API function to fetch driver configuration and disk info.
static Cyg_ErrNo sdcmsc_disk_get_config(disk_channel* ch, 
					cyg_uint32 key, 
					const void* buf, 
					cyg_uint32* len) {

	CYG_UNUSED_PARAM(disk_channel*, ch);
	CYG_UNUSED_PARAM(cyg_uint32, key);
	CYG_UNUSED_PARAM(const void*, buf);
	CYG_UNUSED_PARAM(cyg_uint32*, len);

	return -EINVAL;
}

// API function to update driver status information.
static Cyg_ErrNo sdcmsc_disk_set_config(disk_channel* ch, 
					cyg_uint32 key, 
					const void* buf, 
					cyg_uint32* len) {

	cyg_sdcmsc_disk_info_t *data = (cyg_sdcmsc_disk_info_t*) ch->dev_priv;

	if(key == CYG_IO_SET_CONFIG_DISK_UMOUNT) {
	        if(ch->info->mounts == 0) {
			data->connected = false;
			return (ch->callbacks->disk_disconnected)(ch);
	        }
		else {
			return ENOERR;
		}
	}
	else {
		return -EINVAL;
	}

}

// Register the driver in the system

static cyg_sdcmsc_disk_info_t cyg_sdcmsc_disk0_hwinfo = {
	.connected = 0
};

DISK_FUNS(cyg_sdcmsc_disk_funs,
	  sdcmsc_disk_read,
	  sdcmsc_disk_write,
	  sdcmsc_disk_get_config,
	  sdcmsc_disk_set_config
);


DISK_CONTROLLER(cyg_sdcmsc_disk_controller_0, cyg_sdcmsc_disk0_hwinfo);

DISK_CHANNEL(cyg_sdcmsc_disk0_channel,
             cyg_sdcmsc_disk_funs,
             cyg_sdcmsc_disk0_hwinfo,
             cyg_sdcmsc_disk_controller_0,
             true, //mbr supported
             4 //partitions
);

BLOCK_DEVTAB_ENTRY(cyg_sdcmsc_disk0_devtab_entry,
		   CYGDAT_DEVS_DISK_OPENCORES_SDCMSC_DISK0_NAME,
		   0,
		   &cyg_io_disk_devio,
		   &sdcmsc_disk_init,
		   &sdcmsc_disk_lookup,
		   &cyg_sdcmsc_disk0_channel);

// EOF if_sdcmsc.c



2>测试程序:helloworld.c,Makefile

1》helloworld.c


//==========================================================================
//
//      fatfs1.c
//
//      Test fileio system
//
//==========================================================================
// ####ECOSGPLCOPYRIGHTBEGIN####                                            
// -------------------------------------------                              
// This file is part of eCos, the Embedded Configurable Operating System.   
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2004 Free Software Foundation, Inc.
//
// eCos is free software; you can redistribute it and/or modify it under    
// the terms of the GNU General Public License as published by the Free     
// Software Foundation; either version 2 or (at your option) any later      
// version.                                                                 
//
// eCos is distributed in the hope that it will be useful, but WITHOUT      
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or    
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License    
// for more details.                                                        
//
// You should have received a copy of the GNU General Public License        
// along with eCos; if not, write to the Free Software Foundation, Inc.,    
// 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.            
//
// As a special exception, if other files instantiate templates or use      
// macros or inline functions from this file, or you compile this file      
// and link it with other works to produce a work based on this file,       
// this file does not by itself cause the resulting work to be covered by   
// the GNU General Public License. However the source code for this file    
// must still be made available in accordance with section (3) of the GNU   
// General Public License v2.                                               
//
// This exception does not invalidate any other reasons why a work based    
// on this file might be covered by the GNU General Public License.         
// -------------------------------------------                              
// ####ECOSGPLCOPYRIGHTEND####                                              
//==========================================================================
//#####DESCRIPTIONBEGIN####
//
// Author(s):           nickg
// Contributors:        nickg
// Date:                2000-05-25
// Purpose:             Test fileio system
// Description:         This test uses the testfs to check out the initialization
//                      and basic operation of the fileio system
//                      
//                      
//                      
//                      
//                      
//              
//
//####DESCRIPTIONEND####
//
//==========================================================================

#include 
#include 
#include 

#include         // tracing macros
#include          // assertion macros

#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include 

#include 
#include             // HAL polled output
#include 



//==========================================================================

#define SHOW_RESULT( _fn, _res ) \
diag_printf(": " #_fn "() returned %d %s\n", _res, _res<0?strerror(errno):"");

//==========================================================================

#define IOSIZE  100

#define LONGNAME1       "long_file_name_that_should_take_up_more_than_one_directory_entry_1"
#define LONGNAME2       "long_file_name_that_should_take_up_more_than_one_directory_entry_2"


//==========================================================================

#ifndef CYGPKG_LIBC_STRING

char *strcat( char *s1, const char *s2 )
{
    char *s = s1;
    while( *s1 ) s1++;
    while( (*s1++ = *s2++) != 0);
    return s;
}

#endif

//==========================================================================

static void listdir( char *name, int statp, int numexpected, int *numgot )
{
    int err;
    DIR *dirp;
    int num=0;
    
    diag_printf(": reading directory %s\n",name);
    
    dirp = opendir( name );
    if( dirp == NULL ) SHOW_RESULT( opendir, -1 );

    for(;;)
    {
        struct dirent *entry = readdir( dirp );
        
        if( entry == NULL )
            break;
        num++;
        diag_printf(": entry %14s",entry->d_name);
#ifdef CYGPKG_FS_FAT_RET_DIRENT_DTYPE
        diag_printf(" d_type %2x", entry->d_type);
#endif
        if( statp )
        {
            char fullname[PATH_MAX];
            struct stat sbuf;

            if( name[0] )
            {
                strcpy(fullname, name );
                if( !(name[0] == '/' && name[1] == 0 ) )
                    strcat(fullname, "/" );
            }
            else fullname[0] = 0;
            
            strcat(fullname, entry->d_name );
            
            err = stat( fullname, &sbuf );
            if( err < 0 )
            {
                if( errno == ENOSYS )
                    diag_printf(" ");
                else SHOW_RESULT( stat, err );
            }
            else
            {
                diag_printf(" [mode %08x ino %08x nlink %d size %ld]",
                            sbuf.st_mode,sbuf.st_ino,sbuf.st_nlink,(long)sbuf.st_size);
            }
#ifdef CYGPKG_FS_FAT_RET_DIRENT_DTYPE
            if ((entry->d_type & S_IFMT) != (sbuf.st_mode & S_IFMT))
              CYG_TEST_FAIL("File mode's don't match between dirent and stat");
#endif
        }

        diag_printf("\n");
    }

    err = closedir( dirp );
    if( err < 0 ) SHOW_RESULT( stat, err );
    if (numexpected >= 0 && num != numexpected)
        CYG_TEST_FAIL("Wrong number of dir entries\n");
    if ( numgot != NULL )
        *numgot = num;
}

//==========================================================================

static void createfile( char *name, size_t size )
{
    char buf[IOSIZE];
    int fd;
    ssize_t wrote;
    int i;
    int err;

    diag_printf(": create file %s size %zd \n",name,size);

    err = access( name, F_OK );
    if( err < 0 && errno != EACCES ) SHOW_RESULT( access, err );
    
    for( i = 0; i < IOSIZE; i++ ) buf[i] = i%256;
 
    fd = open( name, O_WRONLY|O_CREAT );
    if( fd < 0 ) SHOW_RESULT( open, fd );

    while( size > 0 )
    {
        ssize_t len = size;
        if ( len > IOSIZE ) len = IOSIZE;
        
        wrote = write( fd, buf, len );
        if( wrote != len ) SHOW_RESULT( write, (int)wrote );        

        size -= wrote;
    }

    err = close( fd );
    if( err < 0 ) SHOW_RESULT( close, err );
}

//==========================================================================

static void maxfile( char *name )
{
    char buf[IOSIZE];
    int fd;
    ssize_t wrote;
    int i;
    int err;
    size_t size = 0;
    size_t prevsize = 0;
    
    diag_printf(": create maximal file %s\n",name);
    diag_printf(": This may take a few minutes\n");

    err = access( name, F_OK );
    if( err < 0 && errno != EACCES ) SHOW_RESULT( access, err );
    
    for( i = 0; i < IOSIZE; i++ ) buf[i] = i%256;
 
    fd = open( name, O_WRONLY|O_CREAT );
    if( fd < 0 ) SHOW_RESULT( open, fd );

    do
    {
        wrote = write( fd, buf, IOSIZE );
        //if( wrote < 0 ) SHOW_RESULT( write, wrote );        

        if( wrote >= 0 )
            size += wrote;

        if( (size-prevsize) > 100000 )
        {
            diag_printf(": size = %zd \n", size);
            prevsize = size;
        }
        
    } while( wrote == IOSIZE );

    diag_printf(": file size == %zd\n",size);

    err = close( fd );
    if( err < 0 ) SHOW_RESULT( close, err );
}

//==========================================================================

static void checkfile( char *name )
{
    char buf[IOSIZE];
    int fd;
    ssize_t done;
    int i;
    int err;
    off_t pos = 0;

    diag_printf(": check file %s\n",name);
    
    err = access( name, F_OK );
    if( err != 0 ) SHOW_RESULT( access, err );

    fd = open( name, O_RDONLY );
    if( fd < 0 ) SHOW_RESULT( open, fd );

    for(;;)
    {
        done = read( fd, buf, IOSIZE );
        if( done < 0 ) SHOW_RESULT( read, (int)done );

        if( done == 0 ) break;

        for( i = 0; i < done; i++ )
            if( buf[i] != i%256 )
            {
                diag_printf("buf[%ld+%d](%02x) != %02x\n",pos,i,buf[i],i%256);
                CYG_TEST_FAIL("Data read not equal to data written\n");
            }
        
        pos += done;
    }

    err = close( fd );
    if( err < 0 ) SHOW_RESULT( close, err );
}

#ifdef CYGCFG_FS_FAT_USE_ATTRIBUTES
//==========================================================================

static void checkattrib(const char *name, 
                        const cyg_fs_attrib_t test_attrib )
{
    int err;
    cyg_fs_attrib_t file_attrib;

    diag_printf(": check attrib %s\n",name);

    err = cyg_fs_get_attrib(name, &file_attrib);
    if( err != 0 ) SHOW_RESULT( stat, err );

    if ( (file_attrib & S_FATFS_ATTRIB) != test_attrib )
        diag_printf(": attrib %s incorrect\n\tExpected %x Was %x\n",
                    name,test_attrib,(file_attrib & S_FATFS_ATTRIB));
}
#endif // CYGCFG_FS_FAT_USE_ATTRIBUTES

//==========================================================================

static void copyfile( char *name2, char *name1 )
{

    int err;
    char buf[IOSIZE];
    int fd1, fd2;
    ssize_t done, wrote;

    diag_printf(": copy file %s -> %s\n",name2,name1);

    err = access( name1, F_OK );
    if( err < 0 && errno != EACCES ) SHOW_RESULT( access, err );

    err = access( name2, F_OK );
    if( err != 0 ) SHOW_RESULT( access, err );
    
    fd1 = open( name1, O_WRONLY|O_CREAT );
    if( fd1 < 0 ) SHOW_RESULT( open, fd1 );

    fd2 = open( name2, O_RDONLY );
    if( fd2 < 0 ) SHOW_RESULT( open, fd2 );
    
    for(;;)
    {
        done = read( fd2, buf, IOSIZE );
        if( done < 0 ) SHOW_RESULT( read, (int)done );

        if( done == 0 ) break;

        wrote = write( fd1, buf, done );
        if( wrote != done ) SHOW_RESULT( write, (int) wrote );

        if( wrote != done ) break;
    }

    err = close( fd1 );
    if( err < 0 ) SHOW_RESULT( close, err );

    err = close( fd2 );
    if( err < 0 ) SHOW_RESULT( close, err );
    
}

//==========================================================================

static void comparefiles( char *name2, char *name1 )
{
    int err;
    char buf1[IOSIZE];
    char buf2[IOSIZE];
    int fd1, fd2;
    ssize_t done1, done2;
    int i;

    diag_printf(": compare files %s == %s\n",name2,name1);

    err = access( name1, F_OK );
    if( err != 0 ) SHOW_RESULT( access, err );

    err = access( name1, F_OK );
    if( err != 0 ) SHOW_RESULT( access, err );
    
    fd1 = open( name1, O_RDONLY );
    if( fd1 < 0 ) SHOW_RESULT( open, fd1 );

    fd2 = open( name2, O_RDONLY );
    if( fd2 < 0 ) SHOW_RESULT( open, fd2 );
    
    for(;;)
    {
        done1 = read( fd1, buf1, IOSIZE );
        if( done1 < 0 ) SHOW_RESULT( read, (int)done1 );

        done2 = read( fd2, buf2, IOSIZE );
        if( done2 < 0 ) SHOW_RESULT( read, (int)done2 );

        if( done1 != done2 )
            diag_printf("Files different sizes\n");
        
        if( done1 == 0 ) break;

        for( i = 0; i < done1; i++ )
            if( buf1[i] != buf2[i] )
            {
                diag_printf("buf1[%d](%02x) != buf1[%d](%02x)\n",i,buf1[i],i,buf2[i]);
                CYG_TEST_FAIL("Data in files not equal\n");
            }
			else
			{
				diag_printf("buf1[%d](%02x) == buf2[%d](%02x)\n",i,buf1[i],i,buf2[i]);
			}
    }

    err = close( fd1 );
    if( err < 0 ) SHOW_RESULT( close, err );

    err = close( fd2 );
    if( err < 0 ) SHOW_RESULT( close, err );
    
}

//==========================================================================

void checkcwd( const char *cwd )
{
    static char cwdbuf[PATH_MAX];
    char *ret;

    ret = getcwd( cwdbuf, sizeof(cwdbuf));
    if( ret == NULL ) SHOW_RESULT( getcwd, (int)ret );    

    if( strcmp( cwdbuf, cwd ) != 0 )
    {
        diag_printf( "cwdbuf %s cwd %s\n",cwdbuf, cwd );
        CYG_TEST_FAIL( "Current directory mismatch");
    }
}

//==========================================================================
// main

int main( int argc, char **argv )
{
    int err;
    int existingdirents=-1;
	int fd = 0;
	char buff[20] = {0};
	char buff1[20] = {0};
	int loop = 0;
	FILE *fp = NULL;
	
    CYG_TEST_INIT();

	err = mount("/dev/mmcdisk0/","/","fatfs"); 
    if( err < 0 )
	{
		SHOW_RESULT( mount, err ); 	
	}
	else
	{
		diag_printf("mount ok!\n");
	}

	
    err = chdir( "/" );
    if( err < 0 )
	{
		SHOW_RESULT( chdir, err );
	}
	else
	{
		diag_printf("chdir ok!\n");	
	}


    checkcwd( "/" );
	
	
    listdir( "/", true, -1, &existingdirents );

    createfile( "/mkg_rill", 10 );
    checkfile( "mkg_rill" );
    copyfile( "mkg_rill", "mkg_rill_bak");
    checkfile( "mkg_rill_bak" );
    comparefiles( "mkg_rill_bak", "/mkg_rill" );
 
 #if 0   
	diag_printf(": mkdir bar\n");
    err = mkdir( "/bar", 0 );
    if( err < 0 ) SHOW_RESULT( mkdir, err );

    listdir( "/" , true, existingdirents+3, NULL );

    copyfile( "fee", "/bar/fum" );
    checkfile( "bar/fum" );
    comparefiles( "/fee", "bar/fum" );

    diag_printf(": cd bar\n");
    err = chdir( "bar" );
    if( err < 0 ) SHOW_RESULT( chdir, err );

    checkcwd( "/bar" );
    
    diag_printf(": rename /foo bundy\n");    
    err = rename( "/foo", "bundy" );
    if( err < 0 ) SHOW_RESULT( rename, err );
    
    listdir( "/", true, existingdirents+2, NULL );
    listdir( "" , true, 4, NULL );

    checkfile( "/bar/bundy" );
    comparefiles("/fee", "bundy" );

    diag_printf(": unlink fee\n");    
    err = unlink( "/fee" );
    if( err < 0 ) SHOW_RESULT( unlink, err );

    diag_printf(": unlink fum\n");        
    err = unlink( "fum" );
    if( err < 0 ) SHOW_RESULT( unlink, err );

    diag_printf(": unlink /bar/bundy\n");        
    err = unlink( "/bar/bundy" );
    if( err < 0 ) SHOW_RESULT( unlink, err );

    diag_printf(": cd /\n");        
    err = chdir( "/" );
    if( err < 0 ) SHOW_RESULT( chdir, err );

    checkcwd( "/" );
    
    diag_printf(": rmdir /bar\n");        
    err = rmdir( "/bar" );
    if( err < 0 ) SHOW_RESULT( rmdir, err );
    
    listdir( "/", false, existingdirents, NULL );
#endif
    

    
    err = umount( "/" );
    if( err < 0 ) SHOW_RESULT( umount, err );
    
    CYG_TEST_PASS_FINISH("fatfs1");
}

// -------------------------------------------------------------------------
// EOF fatfs1.c



2》Makefile


# This variable should point to the directory where you 
# installed your eCos build.
 ECOS_INSTALL := /home/openrisc/share/eCos/ecos-work/install
 
 # As part of the build process, eCos automatically creates
 # a file with compiler flags. Those flags are computed based
 # on the ecc configuration file. It is smart to use them when
 # compiling your application.
 include $(ECOS_INSTALL)/include/pkgconf/ecos.mak
 
 # Unfortunately, some flags are C++ flags and some are C. We
 # need to separate them. The file rules.mak shipped with the eCos
 # repository contains the rules to do it. So we need to include
 # this file in the end of the makefile and use more generic
 # names. We also add the paths to the installation directory.
 CFLAGS := $(ECOS_GLOBAL_CFLAGS) -I $(ECOS_INSTALL)/include
 LDFLAGS := $(ECOS_GLOBAL_LDFLAGS) -L $(ECOS_INSTALL)/lib -T $(ECOS_INSTALL)/lib/target.ld
 
 # Rules to build the application
 all: hello_world
 
 hello_world: hello_world.c
	$(ECOS_COMMAND_PREFIX)gcc $(ACTUAL_CFLAGS) $(LDFLAGS) $< -o $@
 
 # Now include the file with rules. This file must be included
 # in the end, otherwise it interferes with the makefile target.
 #include $(ECOS_REPOSITORY)/pkgconf/rules.mak
 include /home/openrisc/share/eCos/packages/pkgconf/rules.mak



3>read_boot_record()函数修改


static int 
read_boot_record(fatfs_disk_t *disk, fat_boot_record_t *fbr)
{
    cyg_uint8 data[0x5A];
    cyg_uint32 len;
    int err;
    
    len = 0x5A;
    err = disk_read(disk, (void*)data, &len, 0x10e00);//Rill modify at 130717
    if (err != ENOERR)
        return err;
   
    GET_WORD(data,  fbr->jump,           0x00);
    GET_BYTES(data, fbr->oem_name, 8,    0x03);
    GET_WORD(data,  fbr->bytes_per_sec,  0x0B);
    GET_BYTE(data,  fbr->sec_per_clu,    0x0D);
    GET_WORD(data,  fbr->res_sec_num,    0x0E);
    GET_BYTE(data,  fbr->fat_tbls_num,   0x10);
    GET_WORD(data,  fbr->max_root_dents, 0x11);
    GET_WORD(data,  fbr->sec_num_32,     0x13);
    GET_BYTE(data,  fbr->media_desc,     0x15);
    GET_WORD(data,  fbr->sec_per_fat,    0x16);
    GET_WORD(data,  fbr->sec_per_track,  0x18);
    GET_WORD(data,  fbr->heads_num,      0x1A);
    GET_DWORD(data, fbr->hsec_num,       0x1C);
    GET_DWORD(data, fbr->sec_num,        0x20);

    // This is a quick check for FAT12/16 or FAT32 boot record.
    // The sec_per_fat field must be 0 on FAT32, since this
    // field plays a crucial role in detection of the FAT type 
    // (12,16,32) it is quite safe to make this assumption.
    if (0 == fbr->sec_per_fat)
    {
        GET_DWORD(data, fbr->sec_per_fat_32, 0x24);
        GET_WORD(data,  fbr->ext_flags,      0x28);
        GET_WORD(data,  fbr->fs_ver,         0x2A);
        GET_DWORD(data, fbr->root_cluster,   0x2C);
        GET_WORD(data,  fbr->fs_info_sec,    0x30);
        GET_WORD(data,  fbr->bk_boot_sec,    0x32);
        GET_BYTE(data,  fbr->drv_num,        0x40);
        GET_BYTE(data,  fbr->ext_sig,        0x42);
        GET_DWORD(data, fbr->ser_num,        0x43);
        GET_BYTES(data, fbr->vol_name, 11,   0x47);
        GET_BYTES(data, fbr->fat_name, 8,    0x52);
    }
    else
    {
        GET_BYTE(data,  fbr->drv_num,        0x24);
        GET_BYTE(data,  fbr->ext_sig,        0x26);
        GET_DWORD(data, fbr->ser_num,        0x27);
        GET_BYTES(data, fbr->vol_name, 11,   0x2B);
        GET_BYTES(data, fbr->fat_name, 8,    0x36);
    }
    
    // Read the end marker
    len = 0x02;
    err = disk_read(disk, (void*)data, &len, 0x1FE);
    if (err != ENOERR)
        return err;

    GET_BYTES(data, fbr->exe_marker, 2,  0);

    // Zero terminate strings
    fbr->oem_name[8]  = '\0';
    fbr->vol_name[11] = '\0';
    fbr->fat_name[8]  = '\0';
 
#if TDE 
    print_boot_record(fbr);
#endif
    
    return ENOERR;
}




你可能感兴趣的:(OpenRisc,openrisc)