数据算法 Hadoop/Spark大数据处理---第十六章

本章为查找图中的所有三角形

查找三角形的算法的思想
数据算法 Hadoop/Spark大数据处理---第十六章_第1张图片
绘图1.png

本章实现方式

  • 1.基于MapReduce实现
  • 2.基于spark来实现
  • 3.基于传统Scala来实现

++基于传统MapReduce来实现++

1. MapReduce实现的过程

数据算法 Hadoop/Spark大数据处理---第十六章_第2张图片
image

2. MapReduce的实现类

数据算法 Hadoop/Spark大数据处理---第十六章_第3张图片
image

3. Map端代码实现

public class GraphEdgeMapper extends Mapper{
    LongWritable  k2 = new LongWritable();
    LongWritable  v2 = new LongWritable();
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String edge = value.toString().trim();
        String[] nodes = StringUtils.split(edge, " ");
        long nodeA = Long.parseLong(nodes[0]);
        long nodeB = Long.parseLong(nodes[1]);
        k2.set(nodeA);
        v2.set(nodeB);
        //生成两个相对边的集合
        context.write(k2,v2);
        context.write(v2,k2);
    }
}

数据算法 Hadoop/Spark大数据处理---第十六章_第4张图片
image

4. Reduce端代码实现

public class GraphEdgeReducer extends Reducer {
    PairOfLongs k2 = new PairOfLongs();
    LongWritable v2 = new LongWritable();

    //这个类发出{(key,value),1} 的对和{(value1,value2),key}的对
    @Override
    protected void reduce(LongWritable key, Iterable values, Context context) throws IOException, InterruptedException {
        ArrayList list = new ArrayList<>();
        v2.set(0);
        for(LongWritable value : values){
            list.add(value.get());
            k2.set(key.get(),value.get());
            context.write(k2,v2);
        }
        Collections.sort(list);
        v2.set(key.get());
        for(int i=0;i
数据算法 Hadoop/Spark大数据处理---第十六章_第5张图片
image
public class TriadsReducer  extends Reducer {
    static final  Text EMPTY = new Text("");
    @Override
    protected void reduce(PairOfLongs key, Iterable values, Context context) throws IOException, InterruptedException {
        ArrayList list = new ArrayList<>();
        boolean haveSeenSpecialNodeZero = false;

        for(LongWritable value : values){
            long node = value.get();
            if(node ==0){
                haveSeenSpecialNodeZero = true;
            }else{
                list.add(node);
            }
        }
        if(haveSeenSpecialNodeZero){
            if (list.isEmpty()){return;}
            Text triangle = new Text();
            for(long node : list){
                String triangleAsString = key.getLeftElement()+","+key.getRightElement()+","+node;
                triangle.set(triangleAsString);
                context.write(triangle,EMPTY);
            }
        }
        else {
            // no triangles found
            return;
        }
    }
}
数据算法 Hadoop/Spark大数据处理---第十六章_第6张图片
image

5.最后对三角形的中重复值去重即可

++基于传统spark来实现++

 JavaSparkContext ctx = SparkUtil.createJavaSparkContext("count-triangles");
        JavaRDD lines = ctx.textFile(inputPath);
        JavaPairRDD edges = lines.flatMapToPair(new PairFlatMapFunction() {
            @Override
            public Iterator> call(String s) throws Exception {
                String[] tokens = s.split(",");
                long start = Long.parseLong(tokens[0]);
                long end = Long.parseLong(tokens[1]);

                //返回两组边的集合
                return Arrays.asList(new Tuple2(start, end), new Tuple2(end, start)).iterator();
            }
        });
        //对key进行排序
        JavaPairRDD> triads = edges.groupByKey();

        //发出三角形表的对
        JavaPairRDD, Long> possibleTriads = triads.flatMapToPair(new PairFlatMapFunction>, Tuple2, Long>() {
            @Override
            public Iterator, Long>> call(Tuple2> s) throws Exception {
                Iterable values = s._2;
                List, Long>> result = new ArrayList, Long>>();

                for (Long value : values) {
                    Tuple2 k2 = new Tuple2<>(s._1, value);
                    Tuple2, Long> k2v2 = new Tuple2, Long>(k2, 0l);
                    result.add(k2v2);
                }
                ArrayList valuesCopy = new ArrayList<>();
                for (Long item : values) {
                    valuesCopy.add(item);
                }
                Collections.sort(valuesCopy);
                for (int i = 0; i < valuesCopy.size(); i++) {
                    for (int j = i + 1; j < valuesCopy.size(); j++) {
                        Tuple2 k2 = new Tuple2<>(valuesCopy.get(i), valuesCopy.get(j));
                        Tuple2, Long> k2v2 = new Tuple2, Long>(k2, s._1);
                        result.add(k2v2);
                    }
                }
                return result.iterator();
            }
        });
        JavaPairRDD, Iterable> triadsGrouped = possibleTriads.groupByKey();
        JavaRDD> trianglesWithDuplicates = triadsGrouped.flatMap(new FlatMapFunction, Iterable>, Tuple3>() {
            @Override
            public Iterator> call(Tuple2, Iterable> s) throws Exception {
                Tuple2 key = s._1;
                Iterable values = s._2;
                List list = new ArrayList<>();
                boolean haveSeenSpecialNodeZero = false;

                for (Long node : values) {
                    if (node == null) {
                        haveSeenSpecialNodeZero = true;
                    } else {
                        list.add(node);
                    }
                }
                List> result = new ArrayList>();
                if (haveSeenSpecialNodeZero) {
                    if (list.isEmpty()) {
                        return result.iterator();
                    }
                    for (Long node : list) {
                        long[] aTraingle = {key._1, key._2, node};
                        Tuple3 t3 = new Tuple3(aTraingle[0],
                                aTraingle[1],
                                aTraingle[2]);
                        result.add(t3);
                    }
                } else {
                    return result.iterator();
                }

                return result.iterator();
            }
        });

        JavaRDD> uniqueTriangeles = trianglesWithDuplicates.distinct();
        ctx.close();
        System.exit(0);

++基于传统Scala来实现++

val sparkConf = new SparkConf().setAppName("CountTriangles")
    val sc = new SparkContext(sparkConf)

    val input = args(0)
    val output = args(1)

    val lines = sc.textFile(input)

     //对边生成序列
  val edges = lines.flatMap(line =>{
      val tokens = line.split("\\s+")
      val start = tokens(0).toLong
      val end = tokens(1).toLong
      (start,end)::(end,start):: Nil
    })

    val triads = edges.groupByKey();

    val possibleTriads = triads.flatMap(tuple =>{
      val values = tuple._2.toList
      val result = values.map(v=>{
        ((tuple._1,v),0L)
      })
      //对后面的value进行排序
      val sorted = values.sorted
      val combinations = sorted.combinations(2).map{case Seq(a,b)=>(a,b)}.toList
      combinations.map((_,tuple._1)) ::: result
    })
    val triadsGrouped =possibleTriads.groupByKey()

    val triangleWithDuplicates = triadsGrouped.flatMap(tg =>{
      val key = tg._1
      val value = tg._2
      val list = value.filter(_ !=0)
      if(value.exists(_ ==0)){
        if (list.isEmpty) Nil
         list.map(l =>{
           val sorteTriangle = (key._1 :: key._2 :: Nil).sorted
           (sorteTriangle(0),sorteTriangle(1),sorteTriangle(2))
         })
      }else Nil
    })

    val uniqueTriangles = triangleWithDuplicates distinct

    // For debugging purpose
    uniqueTriangles.foreach(println)

    uniqueTriangles.saveAsTextFile(output)

    // done
    sc.stop()

你可能感兴趣的:(数据算法 Hadoop/Spark大数据处理---第十六章)