- GPT-4.5
开发者每周简报
人工智能
OpenAI正式发布GPT-4.5——迄今为止最强大的AI模型的研究预览版。从今天起,它向Pro用户和开发者开放,引发了全球AI爱好者的热烈讨论。OpenAI团队表示,GPT-4.5是他们迄今为止最大、最强的模型,在预训练和后训练方面实现了重大突破。通过扩展无监督学习,GPT-4.5增强了识别模式、建立联系和创造性洞察的能力,尽管它并不是专门为推理任务设计的。早期测试者表示,与GPT-4.5交互的
- 数学建模:MATLAB极限学习机解决回归问题
DesolateGIS
数学建模数学建模matlab开发语言
一、简述极限学习机是一种用于训练单隐层前馈神经网络的算法,由输入层、隐藏层、输出层组成。基本原理:输入层接受传入的样本数据。在训练过程中随机生成从输入层到隐藏层的所有连接权重以及每个隐藏层神经元的偏置值,这些参数在整个训练过程中不会被修改。前向传播:输入数据通过已设定的权重和偏置传递给隐藏层,经过激活函数处理后产生隐藏层的输出。在得到隐藏层输出后,需找到从隐藏层到输出层的最佳权重。隐藏层到输出层的
- DeepSeek-R1 技术报告解读:用强化学习激发大模型的推理潜能
跑起来总会有风
aiAI编程论文阅读
文章目录1.背景2.DeepSeek-R1训练流程2.1DeepSeek-R1-Zero:纯强化学习2.2DeepSeek-R1:冷启动+多阶段训练3.蒸馏小模型3.1蒸馏流程与优势3.2蒸馏vs.直接RL4.实验结果4.1主模型表现4.2蒸馏模型表现5.关键创新与思考6.总结参考链接**导读:**DeepSeek-R1是近期发布的一款开源大模型,它将纯强化学习与多阶段训练策略相结合,大幅提升了模
- 神经进化算法(Neuroevolution) 原理与代码实例讲解
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
神经进化算法,Neuroevolution,进化算法,深度学习,机器学习,遗传算法,神经网络,代码实例1.背景介绍在机器学习领域,神经网络凭借其强大的学习能力和泛化能力,在图像识别、自然语言处理、语音识别等领域取得了显著的成就。然而,传统的神经网络训练方法通常依赖于人工设计的网络结构和参数初始化,这往往需要大量的经验和试错,并且难以找到最优的网络结构和参数。神经进化算法(Neuroevolutio
- 【硬核教程】DeepSeek 70B模型微调实战:打造工业级AI开发专家(附完整代码+案例)
爱吃青菜的大力水手
人工智能自动化半导体
——基于LoRA+GRPO算法,显存直降10倍,手把手教你训练行业大模型为什么这篇内容值得收藏?直击工业软件开发6大痛点:代码规范、性能优化、多约束条件处理等难题一次性解决显存消耗降低90%:4×A100全参数微调显存需求从320GB→32GB,中小企业也能玩转大模型实战案例全覆盖:包含PLC代码生成、产线控制优化等典型场景,代码可直接复现附赠工业数据集模板:JSONL格式对话模板+预处理脚本,快
- 分布式多卡训练(DDP)踩坑
m0_54804970
面试学习路线阿里巴巴分布式
多卡训练最近在跑yolov10版本的RT-DETR,用来进行目标检测。单卡训练语句(正常运行):pythonmain.py多卡训练语句:需要通过torch.distributed.launch来启动,一般是单节点,其中CUDA_VISIBLE_DEVICES设置用的显卡编号,也可以不用,直接在main.py里面指定device也行,–nproc_pre_node每个节点的显卡数量。python-m
- YOLO 中 SPFF 模块的优化与 Focal Modulation 替代研究
向哆哆
YOLOyolov8
文章目录1.YOLO中的SPPF模块分析2.FocalModulation简介3.在YOLO中用FocalModulation替换SPPF4.实验与对比分析4.1代码替换YOLO模型中的SPPF4.2训练对比5.AblationStudy(消融实验)5.1不同模块的对比实验5.2目标尺寸对比分析6.模型部署与推理优化6.1ONNX加速推理6.2适配JetsonNano7.进一步优化方向8.在YOL
- 【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
然哥爱编程
深度学习cnnlstm
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码实现1概述摘要:深度学习模型的超参数选择对模型的性能和泛化能力具有重要影响。本文提出了一种基于鲸鱼算法(WOA)优化长短期记忆神经网络(LSTM)模型的超参数选择方法。首先,我们介绍了LSTM模型的结构和训练过程。然后,我们
- 基于大模型的脂肪栓塞综合征风险预测与综合治疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能算法机器学习
目录一、引言1.1研究背景与意义1.2国内外研究现状1.3研究目的与方法二、脂肪栓塞综合征概述2.1定义与发病机制2.2病因与危险因素2.3临床表现与分类2.4诊断标准与方法三、大模型在脂肪栓塞综合征预测中的应用3.1大模型简介3.2数据收集与预处理3.3模型训练与验证3.4预测结果分析四、基于预测结果的手术方案制定4.1术前评估4.2手术方式选择4.3手术注意事项五、基于预测结果的麻醉方案制定5
- 代码随想录算法训练day65---图论系列9《dijkstra(堆优化版)&Bellman_ford 算法》
Ritsu栗子
算法图论c++
代码随想录算法训练—day64文章目录代码随想录算法训练前言一、47.参加科学大会-----dijkstra(堆优化版)二、94.城市间货物运输I---Bellman_ford算法总结前言今天是算法营的第65天,希望自己能够坚持下来!今天继续图论part!今日任务:●dijkstra(堆优化版)●Bellman_ford算法一、47.参加科学大会-----dijkstra(堆优化版)卡码网题目链接
- DeepSeek-R1:重新定义推理性能的开源人工智能
知识小报童
DeepSeek前言内容整理开源人工智能深度学习机器学习神经网络自然语言处理语言模型
目录重新定义卓越的基准变革性应用案例技术创新后训练优化冷启动数据以提高可用性可扩展性蒸馏模型API集成:为开发者而生竞争定价:可及的高级人工智能开源优势DeepSeek代表的引用推动开放人工智能的边界推动边界意味着什么?挑战与未来方向影响与愿景2025年1月20日–DeepSeek推出了DeepSeek-R1,这是一款突破性的开源人工智能推理模型,旨在与OpenAI的o1等专有对手竞争。该模型在M
- DeepSeek 开源周五个开源项目,引领 AI 创新?
LaughingZhu
开源人工智能产品运营前端经验分享
DeepSeek,作为一家领先的中国AI公司,最近在其五天开源周(2025年2月24日至28日)中发布了五个关键项目。这些项目涵盖了AI基础设施、模型训练和数据处理的各个方面,旨在通过透明和社区驱动的创新推动AI发展。这也解释了为什么DeepSeek可以用低成本训练出高质量的模型。Day1:FlashMLA项目介绍FlashMLA是一个为HopperGPU设计的高效解码内核,专门用于大型语言模型(
- 《AI大模型开发笔记》DeepSeek技术创新点
Richard Chijq
AI大模型开发笔记人工智能笔记
一、DeepSeek横空出世DeepSeekV3以颠覆性技术架构创新强势破局!革命性的上下文处理机制实现长文本推理成本断崖式下降,综合算力需求锐减90%,开启高效AI新纪元!最新开源的DeepSeekV3模型不仅以顶尖基准测试成绩比肩业界SOTA模型,更以惊人的训练效率引发行业震动——仅耗费280万H800GPU小时(对应4e24FLOP@40%MFU)即达成巅峰性能。对比同级别Llama3-40
- STM32实战开发(172):智能体育训练记录系统
嵌入式开发项目
stm32人工智能深度学习单片机嵌入式硬件lstm
引言随着人们对健康和运动的关注,体育训练记录系统变得越来越重要。智能体育训练记录系统能够帮助运动员记录、分析并优化他们的训练数据。通过STM32微控制器结合多种传感器和数据存储模块,本文将介绍如何设计和实现一个智能体育训练记录系统。该系统能够实时采集运动员的训练数据,存储数据并通过分析生成训练报告,帮助运动员优化训练方法。项目目标本项目的目标是实现一个智能体育训练记录系统,能够实时记录运动员在训练
- STM32实战开发(179):智能体育训练计划反馈系统
嵌入式开发项目
stm32嵌入式硬件单片机深度学习人工智能
引言随着现代科技的不断发展,运动科学领域也在不断取得突破,尤其是在体育训练中,科技的应用越来越普及。从专业运动员到普通健身爱好者,都开始使用智能设备来优化训练计划,提高训练效率。在这个过程中,智能体育训练计划反馈系统作为一种新型的辅助工具,越来越受到关注。智能体育训练计划反馈系统的主要目标是通过实时监测运动员在训练中的生理和运动状态,提供科学的训练反馈,帮助运动员及时调整训练策略,避免过度训练或者
- 【AI大模型】Transformers大模型库(九):大模型微调之计算微调参数占比
LDG_AGI
人工智能
目录一、引言二、计算微调参数占比2.1概述2.2模型参数结构一览2.3微调参数占比计算三、总结一、引言这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预训练大模型提供预测、训练等服务。Transformers提供了数以千计的预训练模型,支持100多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的NLP技术人人
- PyTorch数据加载:实战入门
秋.
pytorch人工智能python数据加载
"好的数据加载是成功训练的第一步"一、为什么要用DataLoader?当我们刚开始学习深度学习时,常常会这样处理数据:#传统方式加载数据images=[...]#所有图片数据labels=[...]#所有标签foriinrange(0,len(images),32):batch_images=images[i:i+32]batch_labels=labels[i:i+32]#训练代码...这种方式
- 大模型国产化迁移大模型到昇腾教程(Pytorch版)
科技互联人生
科技数码人工智能AIGC语言模型
大模型国产化适配10-快速迁移大模型到昇腾910B保姆级教程(Pytorch版)随着ChatGPT的火爆,AI大模型时代来临,但算力紧张。中美贸易战及美国制裁AI芯片,国产化势在必行。已有国产AI芯片和Mindformers框架,基于昇腾910训练大模型,使用MindIE实现大模型服务化。本文介绍如何迅速将大型模型迁移到昇腾910B,许多入门者都是从斯坦福羊驼开始的。我们将利用羊驼的训练代码和数据
- 大模型微调入门(Transformers + Pytorch)
昵称不能为null
pythonllm机器学习人工智能
目标输入:你是谁?输出:我们预训练的名字。训练为了性能好下载小参数模型,普通机器都能运行。下载模型#方式1:使用魔搭社区SDK下载#down_deepseek.pyfrommodelscopeimportsnapshot_downloadmodel_dir=snapshot_download('deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B')#方式2:gitl
- 计算机视觉实战:YOLOv8在工业质检中的应用(附完整代码+数据集)
emmm形成中
深度学习人工智能python计算机视觉
计算机视觉实战:YOLOv8在工业质检中的应用(附完整代码+数据集)摘要:本文为零基础读者系统讲解目标检测核心原理,基于YOLOv8实现工业缺陷检测实战项目。从数据标注到模型部署,包含环境配置、数据增强、模型训练全流程详解,手把手教你打造高精度智能质检系统!关键词:YOLOv8、目标检测、工业质检、缺陷识别、PyTorch一、为什么选择YOLOv8做工业质检?1.1工业质检的三大痛点人工成本高:传
- 如何学习训练大模型——100条建议(附详细说明)_如何训练自己的大模型_大模型如何训练
大耳朵爱学习
人工智能语言模型产品经理大模型AI大模型
摘要:通过深入了解本文中的这些细节,并在实际项目中应用相关知识,将能够更好地理解和利用大模型的潜力,不仅在学术研究中,也在工程实践中。通过不断探索新方法、参与项目和保持热情,并将其应用于各种领域,从自然语言处理到计算机视觉和自动驾驶。通过不断学习、实践和探索,可以不断提升自己在深度学习领域的技能和洞察力,同时也能为社会和行业带来创新和改进。从小规模的项目和模型开始,逐渐迭代和扩展到更大的模型,逐步
- 使用深度学习模型U-Net进行训练基于哨兵2的作物分割数据集。PyTorch框架为例,如何构建和训练U-Net模型来完成基于哨兵2的作物分割检测
计算机C9硕士_算法工程师
分割数据深度学习pytorch人工智能
使用深度学习模型如U-Net进行训练基于哨兵2的作物分割。PyTorch框架为例,如何构建和训练U-Net模型来完成基于哨兵2的作物分割检测基于哨兵2的作物分割,共18种作物类型(背景,草地,软冬小麦,玉米,冬季大麦,冬季油菜,春季大麦,向日葵,葡萄藤,甜菜,冬季小黑麦,冬季硬质小麦,水果、蔬菜、花卉,土豆,豆科饲料,大豆,果园,混合谷物,高粱),38到61个不同时间段同一位置10通道多光谱图像,
- DeepSeek 开源狂欢周(四)DualPipe与EPLB双弹齐发,训练效率的“双引擎”加速器!
OpenCSG
开源人工智能社区算法
在DeepSeek开源周的第四天,DualPipe和EPLB这两项全新技术一同亮相,它们不仅为DeepSeek的低成本、高效训练大模型提供了强大支持,还为全球AI爱好者和从业者送上了两份“技术大礼包”。这些创新技术展示了DeepSeek如何以600万美元成本,训练出能与GPT-4o、Claude3.5Sonnet等先进模型一较高下的顶级AI模型。DualPipe:管道气泡的“终结者”训练大模型时,
- 2022.2.10训练思维练习
钟佩颖
c语言
//输出十进制1234对应的八进制和十六进制//#include//intmain()//{//printf("0%o,0x%x\n",1234,1234);//return0;//}//将一个四位数反向输出//#include//intmain()//{//intn=0;//scanf_s("%d",&n);//while(n)//{//printf("%d",n%10);//n=n/10;//
- 2022.2.12思维训练(入门c语言题)
钟佩颖
c语言
//#include//intmain()//{////return0;//}//#include//intmain()//{//printf("%d\n",sizeof(char));//printf("%d\n",sizeof(int));////printf("%d\n",sizeof(long));//printf("%d\n",sizeof(double));//return0;//}/
- 2W8000字 LLM架构文章阅读指北
人工智能
大模型架构专栏已经更新了30多篇文章。完整的专栏内容欢迎订阅:LLM架构专栏1、LLM大模型架构专栏||从NLP基础谈起2、LLM大模型架构专栏||自然语言处理(NLP)之建模3、LLM大模型架构之词嵌入(Part1)3、LLM大模型架构之词嵌入(Part2)3、LLM大模型架构之词嵌入(Part3)4、LLM架构从基础到精通之Word2Vec训练全解析5、LLM架构从基础到精通之循环神经网络(R
- 使用Semantic Kernel:对DeepSeek添加自定义插件
归-途
机器学习oneapi机器学习
SemanticKernel介绍SemanticKernel是一个SDK,它将OpenAI、AzureOpenAI等大型语言模型与C#、Python和Java等传统编程语言集成在一起。SemanticKernel通过允许您定义插件来实现这一点。为什么需要添加插件?大语言模型虽然具有强大的自然语言理解和生成能力,但它们通常是基于预训练的模型,其功能受限于训练时所接触的数据和任务。为大语言模型添加插件
- 关于openAI接口的使用(个人学习总结)
暗雾飘扬
python机器学习_实验项目学习人工智能
文章目录背景OpenAIOpenAI的三种使用方法模型python的openai库根据文档自定义request函数http请求构成接口的响应构成自定义请求和接收函数背景在使用OpenAIAPI接口时遇到了许多问题,在此总结个人的问题(不代表大众),如要深究请看官方OpenAI-API接口文档(中文版)。OpenAIOpenAI的三种使用方法1、使用OpenAIAPI2、使用第三方库3、自己训练模型
- 3.4.4- 先颜色后形状的方式 STM32串口通信 openmv+STM32串口通信 openmv串口通信openmv识别物体 openmv神经网络训练 openmv数字识
好家伙VCC
stm32神经网络嵌入式硬件单片机硬件工程51单片机嵌入式实时数据库
非常详细的视频和文字教程,讲解常见的openmv教程包括巡线、物体识别、圆环识别、阈值自动获取等。非常适合学习openmv、K210、K230等项目视频合集链接在:openmv教程合集openmv入门到项目开发openmv和STM32通信openmv和opencv区别openmv巡线openmv数字识别教程LCD3.4.4-先颜色后形状的方式可以再试试先颜色后形状的识别方式。importsenso
- 3.4.5-识别形状+颜色+增加最小变化阈值 STM32串口通信 openmv+STM32串口通信 openmv串口通信openmv识别物体 openmv神经网络训练 openmv数字识
好家伙VCC
stm32神经网络嵌入式硬件硬件工程单片机机器学习人工智能
非常详细的视频和文字教程,讲解常见的openmv教程包括巡线、物体识别、圆环识别、阈值自动获取等。非常适合学习openmv、K210、K230等项目视频合集链接在:openmv教程合集openmv入门到项目开发openmv和STM32通信openmv和opencv区别openmv巡线openmv数字识别教程LCD3.4.5-识别形状+颜色+增加最小变化阈值在形状+颜色的识别效果中,发现小球是不动,
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文