- ROS下使用usb_cam驱动读取摄像头数据
小杨~~~~
ubuntu
因为darknet_ros会直接订阅指定的图像话题名,然后对图像进行检测,绘制检测框,并发布相应的检测话题,因此首先需要找一个能够发布图像话题的ROS包,这里经推荐使用ROS官方提供的usb_cam驱动包,可以直接将小车摄像头采集的图像发布为ROS图像话题。1、下载摄像头驱动包usb_cam#方式一:直接终端输入,通过apt便捷安装cdtest/src/sudoapt-getinstallros-
- 目标检测-YOLOv4
wydxry
深度学习目标检测YOLO目标跟踪
YOLOv4介绍YOLOv4是YOLO系列的第四个版本,继承了YOLOv3的高效性,并通过大量优化和改进,在目标检测任务中实现了更高的精度和速度。相比YOLOv3,YOLOv4在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检测的同时,显著提升了检测性能,尤其在复杂场景中的表现尤为出色。相比YOLOv3的改进与优势改进的Backbone(CSPDarknet-53)YOLOv4使用
- 基于yolov8的绝缘子缺陷检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLO
【算法介绍】基于YOLOv8的绝缘子缺陷检测系统是一种利用先进深度学习技术的高效解决方案,旨在提升电力行业中输电线路的维护和监控水平。YOLOv8作为YOLO系列算法的最新版本,具备更高的检测速度和精度,特别适用于实时物体检测任务。该系统通过深入分析并标注绝缘子数据集,训练YOLOv8模型以精确识别输电线上的绝缘子及其缺陷状态。利用多尺度检测、FPN结构以及CSPDarknet网络等技术,YOLO
- YOLO系列目标检测数据集大全_yolo数据集(1)
2401_84187537
程序员YOLO目标检测人工智能
Darknet版YOLOv4猫狗识别训练好的权重文件:https://download.csdn.net/download/zhiqingAI/85541214Darknet版YOLOv3猫狗识别训练好的权重文件:https://download.csdn.net/download/zhiqingAI/85541209DeepSORT-YOLOv5猫狗检测和跟踪+可视化目标运动轨迹yolov7猫狗
- 在C++上如何使用OpenCV头文件是什么_用OpenCV的dnn模块调用yolov3模型
weixin_39785858
前言在实际应用场景,我们用darknet的GPU版本训练自己的数据,得到权值文件,然后我们可以调用训练的好的模型去实现自己的检测项目。一般情况下,我们可以使用opencv的dnn模块去调用yolov3。下面大致讲解一下如何是实现调用。一、环境准备1、编译好darknet的GPU版本。可参考我的文章https://zhuanlan.zhihu.com/p/1343471762、安装好opencv3.
- C++ OpenCV-dnn模块调用模型进行目标检测 (支持CUDA加速)
枸杞叶儿
经验笔记深度学习神经网络
前言OpenCV4.4开始支持YOLOv4模型的调用,需要使用Opencv的DNN模块。编译安装OpenCV和OpenCV-contrib库步骤,点此链接C++OpenCV调用YOLO模型的完整代码点此下载一、模型加载constexprconstchar*darknet_cfg="../face/yolov3-tiny.cfg";//网络文件constexprconstchar*darknet_w
- YOLOv8 : 网络结构
赛先生.AI
YOLOv8YOLO计算机视觉目标检测
一.YOLOv8网络结构1.BackboneYOLOv8的Backbone同样参考了CSPDarkNet-53网络,我们可以称之为CSPDarkNet结构吧,与YOLOv5不同的是,YOLOv8使用C2f(CSPLayer_2Conv)代替了C3模块(如果你比较熟悉YOLOv5的网络结构,那YOLOv8的网络结构理解起来就easy了)。如图1所示为YOLOv8网络结构图(引用自MMYOLO),对比
- Ubuntu22.04安装cuda,cudnn, 编译darknet
化石草
ubuntu深度学习yolov3
一,安装cuda:1,下载及安装cuda官网:https://developer.nvidia.com/cuda-toolkit-archivewgethttps://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.runsudoshcuda_11.8.0_
- Darknet yolov3 Makefile文件解析
未完城
ubuntudeep-learningdarknetlinuxmakefile
文章目录1.darknetMakefile注释2.reference现在搞深度学习都在linux平台,经常遇到gcc手动编译的时候。由于linux平台没有通用的IDE,大家都是靠Makefile配置文件进行make。在学习darknet框架的过程中,决定要顺便搞清楚Makefile的写法和参数配置。Makefile完整的教程网上有很多,我暂时也不打算完整学一遍,仅仅把遇到的都搞懂,下次遇到新的东西
- [图像算法]-(yolov5.train)-GPU架构中的半精度fp16与单精度fp32计算
蒸饺与白茶
GPU架构中的半精度与单精度计算 由于项目原因,我们需要对darknet中卷积层进行优化,然而对于像caffe或者darknet这类深度学习框架来说,都已经将卷积运算转换成了矩阵乘法,从而可以方便调用cublas库函数和cudnn里tiling过的矩阵乘。 CUDA在推出7.5的时候提出了可以计算16位浮点数据的新特性。定义了两种新的数据类型half和half2.之前有师弟已经DEMO过半精度
- C++调用yolo模型有哪些方法
jjm2002
深度学习C++c++YOLO开发语言
在C++中调用YOLO模型进行目标检测,可以通过以下几种常见的方法:使用Darknet框架:Darknet是YOLO的官方框架,由YOLO的创作者JosephRedmon编写。它是一个轻量级的深度学习框架,用C语言编写,可以很容易地在C++应用程序中使用。你可以直接使用DarknetAPI来加载训练好的YOLO模型,并进行图像的推理。使用OpenCV的dnn模块:OpenCV是一个开源的计算机视觉
- yolov4 训练自己的数据集--人头识别
晓理紫
机器学习
0、实验环境ubuntu16.04opencv3.4.10cuda10.11、yolov4安装1.1、下载编译darknetdarknet下载地址gitclonehttps://github.com/AlexeyAB/darknetcddarknetdarknet默认编译是不带cuda与opencv,而且不会编译so文件。如果想编译带有cuda与opencv,并编译so文件的需要修改Makefil
- yolo,c++目标识别
码狂☆
AIYOLOc++
yolo,c++目标识别yolo官网https://pjreddie.com/darknet/yolo/yologithubhttps://github.com/pjreddie/darknet/下载编译yolo源码gitclonehttps://github.com/pjreddie/darknetcddarknetmake下载预训练权值文件wgethttps://pjreddie.com/me
- 经典目标检测YOLO系列(三)YOLOv3算法详解
undo_try
#深度学习目标检测YOLOpython
经典目标检测YOLO系列(三)YOLOv3算法详解不论是YOLOv1,还是YOLOv2,都有一个共同的致命缺陷:小目标检测的性能差。尽管YOLOv2使用了passthrough技术将16倍降采样的特征图(即C4特征图)融合到了C5特征图中,但最终的检测仍是在C5尺度的特征图上进行的。为了解决这一问题,YOLO作者做了第3次改进,主要改进如下:使用了更好的主干网络DarkNet-53使用了多级检测与
- 经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程
undo_try
#深度学习目标检测YOLO人工智能
经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程和之前实现的YOLOv2一样,根据《YOLO目标检测》(ISBN:9787115627094)一书,在不脱离YOLOv3的大部分核心理念的前提下,重构一款较新的YOLOv3检测器,来对YOLOv3有更加深刻的认识。书中源码连接:RT-ODLab:YOLOTutorial1、YOLOv3网络架构1.1DarkNet53主
- 用python实现yolov3检测工业相机视频
蘑菇的神
python音视频计算机视觉
前言:学习记录环境:windows+pycharm+yolov3相机:海康工业网口相机:MV-CA020-20GC(Gige,彩色,全局)1.网上有很多网络摄像头跑yolo的案例,但是,不行。网络摄像头和工业相机不一样!yolo是能直接检测网络摄像头的视频的(这个我没有试过,因为没有网络摄像头)./darknetdetectordemocfg/coco.datacfg/yolov3.cfgyolo
- Ubuntu 20.04 安装opencv3.2.0 及报错解决方法
why_blogs
ubuntulinux运维
最近想要学习一下XTDrone里的目标检测与跟踪模块(正好推荐一下肖昆老师团队的项目----XTDrone,感兴趣可以去看看,确实很不错哟!),于是跟着文档往下做,结果发现在ubuntu20.04装Opencv就出问题,此篇文档仅仅记录一下,防止后面忘记。首先说明一下为什么装3.2.0版本,起初我也是图方便,直接装最新版本,结果发现和后面的darknet_ros有冲突,darknet_ros一直编
- Kai - Golang实现的目标检测云服务
yummy_bian
YOLO/Darknet是目前比较流行的ObjectDetection算法(后面统一称为Darknet),在GPU上的表现不但速度快而且准确率很高。但是使用起来不方便,只提供了命令行接口和简单的Python接口。所以我想用RESTful来实现一个云端的Darknet服务kai。选择用Go的原因不是考虑并发,而是goroutine之间的同步能方便的处理,适合实现Pipeline的功能。问题来了,Da
- ROS中darknet_ros功能包运行详解,低帧率如何解决,如何修改Cmake、makefile文件
神筆&『馬良』
ubuntulinux视觉检测YOLOyolov3
本篇博客侧重于使用该功能包,不侧重于获取。我遇到了FPS只有0.2的问题,运行速度过慢。才发现是GPU没有被调用的原因导致的。运行环境:ubuntu20.04+显卡驱动(cuda与cudnn可以装也可以不装)一、获取功能包参考博客:ROS下实现darknet_ros(YOLOV3)检测_camera/rgb/image_raw:=/usb_cam/image_raw__name:=d-CSDN博客
- YOLOv3:算法与论文详细解读
慕溪同学
YOLO目标检测YOLO深度学习目标检测yolo
【yolov1:背景介绍与算法精讲】【yolo9000:Better,Faster,Stronger的目标检测网络】目录一、YOLOv3概述二、创新与改进三、改进细节3.1多尺度特征3.2不同尺度先验框3.3完整的网络结构3.3Darknet-53主干网络3.4残差网络3.4.1恒等映射3.4.2网络退化3.4.3残差结构3.4.4残差的两个堆叠形式3.4.5YOLOV3中的残差连接3.5head
- 基于YOLOv8和RealsenseD455相机实现物体距离检测
油炸大聪明
YOLOpython
目录前言一、Yolov8环境搭建二、配置RealSense-ros功能包1.安装ROS-humble2.安装IntelRealSenseSDK2.0编辑3.克隆ROS功能包三、物体距离检测代码实现1.算法流程:2.代码示例:3.效果展示:前言要基于YOLOv8和RealsenseD455相机实现物体距离检测,可以按照以下步骤进行操作:准备环境:安装YOLOv8:可以使用开源框架如Darknet或P
- 深度学习技术栈 —— Pytorch中保存与加载权重文件
键盘国治理专家
ML&DL技术栈深度学习人工智能
深度学习技术栈——如何保存权重文件?一、权重文件的格式二、保存权重文件三、加载权重文件3.1nn.module.eval()方法一、权重文件的格式权重文件是指训练好的模型参数文件,不同的深度学习框架和模型可能使用不同的权重文件格式。以下是一些常见的权重文件格式:PyTorch的模型格式:.pt文件。Darknet的模型格式:.weight文件。TensorFlow的模型格式:.ckpt文件。一、参
- Darknet_yolov2综述入门整理
立夏陆之昂
学习小记录
接着上次的神经网络,这次整理一下Darknet,yolov2首先得先了解Darknet,是深度学习框架,总的来说深度学习框架提供了一些列的深度学习的组件(对于通用的算法,里面会有实现),当需要使用新的算法的时候就需要用户自己去定义,然后调用深度学习框架的函数接口使用用户自定义的新算法.这篇讲述了深度学习框架的定义:https://blog.csdn.net/yeler082/article/det
- bin文件读写 - C/C++
生活需要深度
CC++c语言C++二进制文件
本文介绍一下C和C++读取和保存bin文件的方法。 bin文件的存取在调试网络推理定位问题的时候可能会经常用到,如在这个框架里网络输出和预期对不上,经常需要把这个网络里的前处理输出、网络推理输出搬到另外的框架里走一遍,来确定是前处理有问题,还是网络推理有问题,还是后处理有问题。这里分享一下C语言和C++读取和保存特征数据为bin文件的方法。其实大部分情况可以用C++搞定,但如darknet这种纯C
- 【深度学习目标检测】十五、基于深度学习的口罩检测系统-含GUI和源码(python,yolov8)
justld
深度学习CNN目标检测深度学习目标检测python
YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。YOLO(YouOnlyLookOnce)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。YOLOv8采用了Darknet-53作为其基础网络架构。Darknet-53是一个53层的卷积神经网络,用于提取图像特征。与传统的卷积神经网络相比,Darkne
- 基于YOLOv5+单目的物体距离和尺寸测量
code2035
yolo从入门到精通机器视觉从入门到精通OpenCV从入门到精通YOLO计算机视觉人工智能opencv机器学习
目录1,YOLOv5原理介绍2,单目测尺寸以及距离原理2.1单目测物体距离2.2单目测物体尺寸3,成果展示3.3测距离3.2测尺寸:1,YOLOv5原理介绍YOLOv5是目前应用广泛的目标检测算法之一,其主要结构分为两个部分:骨干网络和检测头。骨干网络采用的是CSPDarknet53,这是一种基于Darknet框架的改进版卷积神经网络。CSPDarknet53通过使用残差结构和跨层连接来提高网络的
- 目标检测-One Stage-YOLOx
学海一叶
目标检测目标检测人工智能计算机视觉YOLO深度学习
文章目录前言一、YOLOx的网络结构和流程1.YOLOx的不同版本2.Yolox-Darknet53YOLOv3baselineYolox-Darknet533.Yolox-s/Yolox-m/Yolox-l/Yolox-x4.Yolox-Nano/Yolox-Tiny二、YOLOx的创新点总结前言根据前文CenterNet、YOLOv4等可以看出学界和工业界都在积极探索使用各种tricks(an
- 超维空间M1无人机使用说明书——41、ROS无人机使用yolo进行物体识别
南京超维空间智能科技有限公司
超维空间S2无人机使用说明超维空间M1无人机使用说明无人机YOLOROS物体识别
引言:用于M1无人机使用的18.04系统,采用的opencv3.4.5版本,因此M1无人机只提供了基于yolov3和yolov4版本的darknet_ros功能包进行物体识别,识别效果足够满足日常的物体识别使用,如果需要更高版本的yolov7或者yolov8,可以参考博客的yolov7和yolov8的使用。链接:源码链接一、启动darknet_ros物体识别roslaunchrobot_bring
- Darknet yolov4 转onnx
鲤鱼不懂
darknetyolov4onnxpytorch深度学习计算机视觉
前段时间,自己瞎搞,需要把Darknetyolov4转成onnx格式,在此记录一下过程。我们需要在github上下载以为大佬写好的转换代码https://github.com/Tianxiaomo/pytorch-YOLOv4执行如下命令:cdpytorch-YOLOv4python3demo_darknet2onnx.py./yolov4.cfg./data/coco.names./yolov4
- 目标检测-One Stage-YOLO v3
学海一叶
目标检测目标检测YOLO人工智能计算机视觉算法
文章目录前言一、YOLOv3的网络结构和流程二、YOLOv3的创新点总结前言根据前文目标检测-OneStage-YOLOv2可以看出YOLOv2的速度和精度都有相当程度的提升,但是精度仍较低,YOLOv3基于一些先进的结构和思想对YOLOv2做了一些改进。提示:以下是本篇文章正文内容,下面内容和可供参考一、YOLOv3的网络结构和流程将影像输入卷积网络(DarkNet53)+FPN得到多尺度特征图
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持