Pytorch学习(四)--编程实战:猫和狗二分类

Pytorch学习系列(一)至(四)均摘自《深度学习框架PyTorch入门与实践》陈云

目录:

1.程序的主要功能

2.文件组织架构

3. 关于`__init__.py`

4.数据处理

5.模型定义

6.工具函数

7.配置文件

8.main.py

9.使用


1.程序的主要功能:

  • 模型定义
  • 数据加载
  • 训练和测试


2.文件组织架构:

```
├── checkpoints/
├── data/
│   ├── __init__.py
│   ├── dataset.py
│   └── get_data.sh
├── models/
│   ├── __init__.py
│   ├── AlexNet.py
│   ├── BasicModule.py
│   └── ResNet34.py
└── utils/
│   ├── __init__.py
│   └── visualize.py
├── config.py
├── main.py
├── requirements.txt
├── README.md

```

其中:

- `checkpoints/`: 用于保存训练好的模型,可使程序在异常退出后仍能重新载入模型,恢复训练
- `data/`:数据相关操作,包括数据预处理、dataset实现等
- `models/`:模型定义,可以有多个模型,例如上面的AlexNet和ResNet34,一个模型对应一个文件
- `utils/`:可能用到的工具函数,在本次实验中主要是封装了可视化工具

- `config.py`:配置文件,所有可配置的变量都集中在此,并提供默认值
- `main.py`:主文件,训练和测试程序的入口,可通过不同的命令来指定不同的操作和参数
- `requirements.txt`:程序依赖的第三方库

- `README.md`:提供程序的必要说明


3. 关于`__init__.py`

可以看到,几乎每个文件夹下都有`__init__.py`,一个目录如果包含了`__init__.py` 文件,那么它就变成了一个包(package)。

`__init__.py`可以为空,也可以定义包的属性和方法,但其必须存在,其它程序才能从这个目录中导入相应的模块或函数。

例如在`data/`文件夹下有`__init__.py`,则在`main.py` 中就可以`from data.dataset import DogCat`。而如果在`__init__.py`中写入`from .dataset import DogCat`,则在main.py中就可以直接写为:`from data import DogCat`,或者`import data; dataset = data.DogCat`,相比于`from data.dataset import DogCat`更加便捷。


4.数据处理

数据的相关处理主要保存在`data/dataset.py`中。

关于数据加载的相关操作,其基本原理就是使用`Dataset`提供数据集的封装,再使用`Dataloader`实现数据并行加载。

Kaggle提供的数据包括训练集和测试集,而我们在实际使用中,还需专门从训练集中取出一部分作为验证集。对于这三类数据集,其相应操作也不太一样,而如果专门写三个`Dataset`,则稍显复杂和冗余,因此这里通过加一些判断来区分。对于训练集,我们希望做一些数据增强处理,如随机裁剪、随机翻转、加噪声等,而验证集和测试集则不需要。下面看`dataset.py`的代码:

#coding:utf8
import os
from PIL import  Image
from torch.utils import data
import numpy as np
from torchvision import  transforms as T


class DogCat(data.Dataset):
    
    def __init__(self,root,transforms=None,train=True,test=False):
        '''
        主要目标: 获取所有图片的地址,并根据训练,验证,测试划分数据
        '''
        self.test = test
        imgs = [os.path.join(root,img) for img in os.listdir(root)] 

        # test1: data/test1/8973.jpg
        # train: data/train/cat.10004.jpg 
        if self.test:
            imgs = sorted(imgs,key=lambda x:int(x.split('.')[-2].split('/')[-1]))
        else:
            imgs = sorted(imgs,key=lambda x:int(x.split('.')[-2]))
            
        imgs_num = len(imgs)

        if self.test:
            self.imgs = imgs
        elif train:
            self.imgs = imgs[:int(0.7*imgs_num)]
        else :
            self.imgs = imgs[int(0.7*imgs_num):]
            
    
        if transforms is None:
            normalize = T.Normalize(mean = [0.485, 0.456, 0.406], 
                                     std = [0.229, 0.224, 0.225])

            if self.test or not train: 
                self.transforms = T.Compose([
                    T.Scale(224),
                    T.CenterCrop(224),
                    T.ToTensor(),
                    normalize
                    ]) 
            else :
                self.transforms = T.Compose([
                    T.Scale(256),
                    T.RandomSizedCrop(224),
                    T.RandomHorizontalFlip(),
                    T.ToTensor(),
                    normalize
                    ]) 
                
        
    def __getitem__(self,index):
        '''
        一次返回一张图片的数据
        '''
        img_path = self.imgs[index]
        if self.test: label = int(self.imgs[index].split('.')[-2].split('/')[-1])
        else: label = 1 if 'dog' in img_path.split('/')[-1] else 0
        data = Image.open(img_path)
        data = self.transforms(data)
        return data, label
    
    def __len__(self):
        return len(self.imgs)

5.模型定义

模型的定义主要保存在`models/`目录下,其中`BasicModule`是对`nn.Module`的简易封装,提供快速加载和保存模型的接口。


#coding:utf8
import torch as t
import time


class BasicModule(t.nn.Module):
    '''
    封装了nn.Module,主要是提供了save和load两个方法
    '''

    def __init__(self):
        super(BasicModule,self).__init__()
        self.model_name=str(type(self))# 默认名字

    def load(self, path):
        '''
        可加载指定路径的模型
        '''
        self.load_state_dict(t.load(path))

    def save(self, name=None):
        '''
        保存模型,默认使用“模型名字+时间”作为文件名
        '''
        if name is None:
            prefix = 'checkpoints/' + self.model_name + '_'
            name = time.strftime(prefix + '%m%d_%H:%M:%S.pth')
        t.save(self.state_dict(), name)
        return name


class Flat(t.nn.Module):
    '''
    把输入reshape成(batch_size,dim_length)
    '''

    def __init__(self):
        super(Flat, self).__init__()
        #self.size = size

    def forward(self, x):
        return x.view(x.size(0), -1)


6.工具函数

在项目中,我们可能会用到一些helper方法,这些方法可以统一放在`utils/`文件夹下,需要使用时再引入。在本例中主要是封装了可视化工具visdom的一些操作,其代码如下,在本次实验中只会用到`plot`方法,用来统计损失信息。

#coding:utf8
import visdom
import time
import numpy as np

class Visualizer(object):
    '''
    封装了visdom的基本操作,但是你仍然可以通过`self.vis.function`
    调用原生的visdom接口
    '''

    def __init__(self, env='default', **kwargs):
        self.vis = visdom.Visdom(env=env, **kwargs)
        
        # 画的第几个数,相当于横座标
        # 保存(’loss',23) 即loss的第23个点
        self.index = {} 
        self.log_text = ''
    def reinit(self,env='default',**kwargs):
        '''
        修改visdom的配置
        '''
        self.vis = visdom.Visdom(env=env,**kwargs)
        return self

    def plot_many(self, d):
        '''
        一次plot多个
        @params d: dict (name,value) i.e. ('loss',0.11)
        '''
        for k, v in d.items():
            self.plot(k, v)

    def img_many(self, d):
        for k, v in d.items():
            self.img(k, v)

    def plot(self, name, y,**kwargs):
        '''
        self.plot('loss',1.00)
        '''
        x = self.index.get(name, 0)
        self.vis.line(Y=np.array([y]), X=np.array([x]),
                      win=name,
                      opts=dict(title=name),
                      update=None if x == 0 else 'append',
                      **kwargs
                      )
        self.index[name] = x + 1

    def img(self, name, img_,**kwargs):
        '''
        self.img('input_img',t.Tensor(64,64))
        self.img('input_imgs',t.Tensor(3,64,64))
        self.img('input_imgs',t.Tensor(100,1,64,64))
        self.img('input_imgs',t.Tensor(100,3,64,64),nrows=10)

        !!!don‘t ~~self.img('input_imgs',t.Tensor(100,64,64),nrows=10)~~!!!
        '''
        self.vis.images(img_.cpu().numpy(),
                       win=name,
                       opts=dict(title=name),
                       **kwargs
                       )


    def log(self,info,win='log_text'):
        '''
        self.log({'loss':1,'lr':0.0001})
        '''

        self.log_text += ('[{time}] {info} 
'.format( time=time.strftime('%m%d_%H%M%S'),\ info=info)) self.vis.text(self.log_text,win) def __getattr__(self, name): return getattr(self.vis, name)

7.配置文件

在模型定义、数据处理和训练等过程都有很多变量,这些变量应提供默认值,并统一放置在配置文件中,这样在后期调试、修改代码或迁移程序时会比较方便,在这里我们将所有可配置项放在`config.py`中。


#coding:utf8
import warnings
class DefaultConfig(object):
    env = 'default' # visdom 环境
    model = 'ResNet34' # 使用的模型,名字必须与models/__init__.py中的名字一致
    
    train_data_root = './data/train/' # 训练集存放路径
    test_data_root = './data/test1' # 测试集存放路径
    load_model_path = 'checkpoints/model.pth' # 加载预训练的模型的路径,为None代表不加载

    batch_size = 128 # batch size
    use_gpu = True # user GPU or not
    num_workers = 4 # how many workers for loading data
    print_freq = 20 # print info every N batch

    debug_file = '/tmp/debug' # if os.path.exists(debug_file): enter ipdb
    result_file = 'result.csv'
      
    max_epoch = 10
    lr = 0.1 # initial learning rate
    lr_decay = 0.95 # when val_loss increase, lr = lr*lr_decay
    weight_decay = 1e-4 # 损失函数



def parse(self,kwargs):
        '''
        根据字典kwargs 更新 config参数
        '''
        for k,v in kwargs.items():
            if not hasattr(self,k):
                warnings.warn("Warning: opt has not attribut %s" %k)
            setattr(self,k,v)

        print('user config:')
        for k,v in self.__class__.__dict__.items():
            if not k.startswith('__'):
                print(k,getattr(self,k))


DefaultConfig.parse = parse
opt =DefaultConfig()
# opt.parse = parse

8.main.py

在讲解主程序`main.py`之前,我们先来看看2017年3月谷歌开源的一个命令行工具`fire`[^3] ,通过`pip install fire`即可安装。下面来看看`fire`的基础用法,假设`example.py`文件内容如下:

import fire

def add(x, y):
  return x + y
  
def mul(**kwargs):
    a = kwargs['a']
    b = kwargs['b']
    return a * b

if __name__ == '__main__':
  fire.Fire()

python example.py add 1 2 # 执行add(1, 2)
python example.py mul --a=1 --b=2 # 执行mul(a=1, b=2), kwargs={'a':1, 'b':2}
python example.py add --x=1 --y==2 # 执行add(x=1, y=2)
在主程序`main.py`中,主要包含四个函数,其中三个需要命令行执行,`main.py`的代码组织结构如下:

def train(**kwargs):
    '''
    训练
    '''
    pass
	 
def val(model, dataloader):
    '''
    计算模型在验证集上的准确率等信息,用以辅助训练
    '''
    pass

def test(**kwargs):
    '''
    测试(inference)
    '''
    pass

def help():
    '''
    打印帮助的信息 
    '''
    print('help')

if __name__=='__main__':
    import fire
    fire.Fire()



训练

训练的主要步骤如下:

- 定义网络
- 定义数据
- 定义损失函数和优化器
- 计算重要指标
- 开始训练
  - 训练网络
  - 可视化各种指标
  - 计算在验证集上的指标


def train(**kwargs):
    opt.parse(kwargs)
    vis = Visualizer(opt.env)

    # step1: configure model
    model = getattr(models, opt.model)()
    if opt.load_model_path:
        model.load(opt.load_model_path)
    if opt.use_gpu: model.cuda()

    # step2: data
    train_data = DogCat(opt.train_data_root,train=True)
    val_data = DogCat(opt.train_data_root,train=False)
    train_dataloader = DataLoader(train_data,opt.batch_size,
                        shuffle=True,num_workers=opt.num_workers)
    val_dataloader = DataLoader(val_data,opt.batch_size,
                        shuffle=False,num_workers=opt.num_workers)
    
    # step3: criterion and optimizer
    criterion = t.nn.CrossEntropyLoss()
    lr = opt.lr
    optimizer = t.optim.Adam(model.parameters(),lr = lr,weight_decay = opt.weight_decay)
        
    # step4: meters
    loss_meter = meter.AverageValueMeter()
    confusion_matrix = meter.ConfusionMeter(2)
    previous_loss = 1e100

    # train
    for epoch in range(opt.max_epoch):
        
        loss_meter.reset()
        confusion_matrix.reset()

        for ii,(data,label) in enumerate(train_dataloader):

            # train model 
            input = Variable(data)
            target = Variable(label)
            if opt.use_gpu:
                input = input.cuda()
                target = target.cuda()

            optimizer.zero_grad()
            score = model(input)
            loss = criterion(score,target)
            loss.backward()
            optimizer.step()
            
            
            # meters update and visualize
            loss_meter.add(loss.data[0])
            confusion_matrix.add(score.data, target.data)

            if ii%opt.print_freq==opt.print_freq-1:
                vis.plot('loss', loss_meter.value()[0])
                
                # 进入debug模式
                if os.path.exists(opt.debug_file):
                    import ipdb;
                    ipdb.set_trace()


        model.save()

        # validate and visualize
        val_cm,val_accuracy = val(model,val_dataloader)

        vis.plot('val_accuracy',val_accuracy)
        vis.log("epoch:{epoch},lr:{lr},loss:{loss},train_cm:{train_cm},val_cm:{val_cm}".format(
                    epoch = epoch,loss = loss_meter.value()[0],val_cm = str(val_cm.value()),train_cm=str(confusion_matrix.value()),lr=lr))
        
        # update learning rate
        if loss_meter.value()[0] > previous_loss:          
            lr = lr * opt.lr_decay
            # 第二种降低学习率的方法:不会有moment等信息的丢失
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr
        

        previous_loss = loss_meter.value()[0]

验证

验证相对来说比较简单,但要注意需将模型置于验证模式(`model.eval()`),验证完成后还需要将其置回为训练模式(`model.train()`),这两句代码会影响`BatchNorm`和`Dropout`等层的运行模式。验证模型准确率的代码如下。

def val(model,dataloader):
    '''
    计算模型在验证集上的准确率等信息
    '''
    model.eval()
    confusion_matrix = meter.ConfusionMeter(2)
    for ii, data in enumerate(dataloader):
        input, label = data
        val_input = Variable(input, volatile=True)
        val_label = Variable(label.type(t.LongTensor), volatile=True)
        if opt.use_gpu:
            val_input = val_input.cuda()
            val_label = val_label.cuda()
        score = model(val_input)
        confusion_matrix.add(score.data.squeeze(), label.type(t.LongTensor))

    model.train()
    cm_value = confusion_matrix.value()
    accuracy = 100. * (cm_value[0][0] + cm_value[1][1]) / (cm_value.sum())
    return confusion_matrix, accuracy


测试

测试时,需要计算每个样本属于狗的概率,并将结果保存成csv文件。测试的代码与验证比较相似,但需要自己加载模型和数据。

def test(**kwargs):
    opt.parse(kwargs)
    import ipdb;
    ipdb.set_trace()
    # configure model
    model = getattr(models, opt.model)().eval()
    if opt.load_model_path:
        model.load(opt.load_model_path)
    if opt.use_gpu: model.cuda()

    # data
    train_data = DogCat(opt.test_data_root,test=True)
    test_dataloader = DataLoader(train_data,batch_size=opt.batch_size,shuffle=False,num_workers=opt.num_workers)
    results = []
    for ii,(data,path) in enumerate(test_dataloader):
        input = t.autograd.Variable(data,volatile = True)
        if opt.use_gpu: input = input.cuda()
        score = model(input)
        probability = t.nn.functional.softmax(score)[:,0].data.tolist()
        # label = score.max(dim = 1)[1].data.tolist()
        
        batch_results = [(path_,probability_) for path_,probability_ in zip(path,probability) ]

        results += batch_results
    write_csv(results,opt.result_file)

    return results

帮助函数

为了方便他人使用, 程序中还应当提供一个帮助函数,用于说明函数是如何使用。程序的命令行接口中有众多参数,如果手动用字符串表示不仅复杂,而且后期修改config文件时,还需要修改对应的帮助信息,十分不便。这里使用了Python标准库中的inspect方法,可以自动获取config的源代码。help的代码如下:

def help():
    '''
    打印帮助的信息: python file.py help
    '''
    
    print('''
    usage : python file.py  [--args=value]
     := train | test | help
    example: 
            python {0} train --env='env0701' --lr=0.01
            python {0} test --dataset='path/to/dataset/root/'
            python {0} help
    avaiable args:'''.format(__file__))

    from inspect import getsource
    source = (getsource(opt.__class__))
    print(source)

9.使用

正如`help`函数的打印信息所述,可以通过命令行参数指定变量名.下面是三个使用例子,fire会将包含`-`的命令行参数自动转层下划线`_`,也会将非数值的值转成字符串。所以`--train-data-root=data/train`和`--train_data_root='data/train'`是等价的。

```
# 训练模型
python main.py train
        --train-data-root=data/train/
        --load-model-path='checkpoints/resnet34_16:53:00.pth'
        --lr=0.005
        --batch-size=32
        --model='ResNet34'  
        --max-epoch = 20

# 测试模型
python main.py test
       --test-data-root=data/test1
       --load-model-path='checkpoints/resnet34_00:23:05.pth'
       --batch-size=128
       --model='ResNet34'
       --num-workers=12

# 打印帮助信息
python main.py help



你可能感兴趣的:(深度学习)