很郁闷为什么网上的布丰投针都写的这么复杂,而且很多都是复读机直接copy别人,其实这是个很精巧、有趣的实验,所以打算自己写一个布丰投针的介绍
你在教室里写数学题,突然有个人,抱着一大盒针走过来,然后把针撒到地上,然后很淡定地点点头说,“嗯,我知道π等于多少了”。
是不是觉得很神奇?!这跟π什么关系?!!!
没错,这个人就是布丰。
这个实验也很简单,两段距离为D的平行线、一根长为L的针(L≤D)
投针实验就是把这根针扔到两段平行线之间,然后统计针碰到平行线的次数,例如图中的两根针,红色针就是碰到,黑色针就是没碰到
哪这和π是怎么扯上关系的呢?是从”针碰到平行线“的数学定义中推导得到的。我们先想办法定义针的位置,取针的中点向最近的平行线做垂线,定义该垂线为 X X X,该垂线与针的夹角为 θ θ θ
因为针是在两段平行线之间,故
X ∈ [ 0 , D / 2 ] X\in[0, D/2] X∈[0,D/2]
同时因为总能找到一个小于90°的角,故
θ ∈ [ 0 , π / 2 ] θ\in[0, π/2] θ∈[0,π/2]
X X X与 θ θ θ与平行线可以组成一个直角三角形,所以斜边的长度是 X / c o s θ X/cosθ X/cosθ
因此,只要
X / c o s θ < L / 2 X/cosθ < L/2 X/cosθ<L/2
即 X < ( L / 2 ) ∗ c o s θ 即X < (L/2)*cosθ 即X<(L/2)∗cosθ
的话(其实取≤也可以,影响不大),就说明针碰到了平行线,否则就说明没碰到,下图分别为”没碰到和“碰到”的情况
下面我们来表示出“针碰到平行线的概率”,即
P { X < L 2 c o s θ } P\{X<\frac{L}{2}cosθ\} P{X<2Lcosθ}
求概率,本质就是比值,而因为 X X X与 θ θ θ是连续的,所以上面的比值可以等价于面积的比值
即,当 X X X与 θ θ θ在其取值范围内变化时,会生成无数个点,这些点的总面积为 S = D 2 ∗ π 2 = D ∗ π 4 S = \frac{D}{2} * \frac{π}{2} = \frac{D*π}{4} S=2D∗2π=4D∗π (由 X X X与 θ θ θ的取值范围决定)
在这无数个点中,有一些点满足 X < L 2 c o s θ X<\frac{L}{2}cosθ X<2Lcosθ这一条件,这些点的面积记作 S 1 S_1 S1,所以
P { X < L 2 c o s θ } = S 1 S P\{X<\frac{L}{2}cosθ\} = \frac{S1}{S} P{X<2Lcosθ}=SS1
那怎么把 S 1 S_1 S1表示出来呢?因为针的中心点和角度是没关系的,所以我们可以假设中 X X X与 θ θ θ是相互独立的,且他们在各自的取值范围内服从均匀分布,所以可以写成
剩下的就算微积分的事情了
所以可得
P { X < L 2 c o s θ } = 2 ∗ L π ∗ D P\{X<\frac{L}{2}cosθ\} = \frac{2*L}{π*D} P{X<2Lcosθ}=π∗D2∗L
接下来,我们就可以反向思维,把 π π π表示出来
π = 2 ∗ L P { X < L 2 c o s θ } ∗ D π = \frac{2*L}{P\{X<\frac{L}{2}cosθ\}*D} π=P{X<2Lcosθ}∗D2∗L
所以,只要知道了 L L L、 D D D、 P { X < L 2 c o s θ } P\{X<\frac{L}{2}cosθ\} P{X<2Lcosθ}就可以算出 π π π
那问题来了, P { X < L 2 c o s θ } P\{X<\frac{L}{2}cosθ\} P{X<2Lcosθ}不是根据上面积分算出来的吗?你这样不就鸡生蛋蛋生鸡了?
其实 P { X < L 2 c o s θ } P\{X<\frac{L}{2}cosθ\} P{X<2Lcosθ}还可以通过做实验的途径得到,例如我投100次针,其中有50次针碰到了平行线,那么 P { X < L 2 c o s θ } = 50 100 = 0.5 P\{X<\frac{L}{2}cosθ\}=\frac{50}{100}=0.5 P{X<2Lcosθ}=10050=0.5
这样一来, π π π也就能求出来了
这种通过做实验来求积分的方法,就是大名鼎鼎的蒙特卡洛方法
(你也可以认为是暴力求解积分哈哈哈)
以上,就是布丰投针实验求 π π π的过程
import random
import numpy as np
from tqdm import tqdm
# 平行线距离
D = 2
# 针的长度
L = 1
# 实验次数
exp_num = 100000000
# 触碰次数
touch_num = 0
for i in tqdm(range(1, exp_num+1)):
X = random.uniform(0, D / 2)
theta = random.uniform(0, np.pi / 2)
if X < (L/2)*np.cos(theta):
touch_num += 1
# 计算π
P = touch_num/exp_num
print('π = {}'.format((2*L)/(P*D)))
结果为:
π = 3.1412599467996216
大家可能会对theta = random.uniform(0, np.pi / 2)
很疑问,我想求得是 π π π,但是代码中就已经给定 π π π(即np.pi
),这不就犯规了吗?
其实不是,因为代码中我们要模拟现实的投针场景,所以theta = random.uniform(0, np.pi / 2)
就是我们的现实,相当于是上帝提前设定好的,我们不知道的
我们的结果、我们想求的东西,就是希望去找到theta = random.uniform(0, np.pi / 2)
中的 π π π(即np.pi
)是多少,它是我们的目标,我们希望结果尽可能的接近他
换句话说,如果我把theta = random.uniform(0, np.pi / 2)
中的 π π π(即np.pi
)换成数字5
的话(即改为theta = random.uniform(0, 5 / 2)
)
我们输出的结果就会非常接近5
,因为我们此时想要拟合的目标是5
运行下面的代码(只改了theta
那一行),输出结果为:π = 5.00038202918703
import random
import numpy as np
from tqdm import tqdm
# 平行线距离
D = 2
# 针的长度
L = 1
# 实验次数
exp_num = 100000000
# 触碰次数
touch_num = 0
for i in tqdm(range(1, exp_num+1)):
X = random.uniform(0, D / 2)
theta = random.uniform(0, 5 / 2)
if X < (L/2)*np.cos(theta):
touch_num += 1
# 计算π
P = touch_num/exp_num
print('π = {}'.format((2*L)/(P*D)))
π π π只是个外衣,不要被骗了哈哈哈
布丰投针给我们提供的是一种解决问题的思路,”通过数学推导与实验(蒙特卡洛方法)的配合,求出难以直接计算得到的值“,我认为这才是这个实验的巧妙之处~