- [实践应用] 深度学习之模型性能评估指标
YuanDaima2048
深度学习工具使用深度学习人工智能损失函数性能评估pytorchpython机器学习
文章总览:YuanDaiMa2048博客文章总览深度学习之模型性能评估指标分类任务回归任务排序任务聚类任务生成任务其他介绍在机器学习和深度学习领域,评估模型性能是一项至关重要的任务。不同的学习任务需要不同的性能指标来衡量模型的有效性。以下是对一些常见任务及其相应的性能评估指标的详细解释和总结。分类任务分类任务是指模型需要将输入数据分配到预定义的类别或标签中。以下是分类任务中常用的性能指标:准确率(
- 大规模语言模型的书籍分享,从零基础入门到精通非常详细收藏我这一篇就够了
黑客-雨
语言模型人工智能自然语言处理学习大模型学习大模型入门大模型教程
在当今人工智能领域,大规模语言模型成为了研究和应用的热点之一。它们以其大规模的参数和强大的性能表现,推动着机器学习和深度学习技术的发展。对于GPT系列大规模语言模型的发展历程,有两点令人印象深刻。第一点是可拓展的训练架构与学习范式:Transformer架构能够拓展到百亿、千亿甚至万亿参数规模,并且将预训练任务统一为预测下一个词这一通用学习范式;第二点是对于数据质量与数据规模的重视:不同于BERT
- 机器学习与深度学习的区别
eqa11
机器学习
文章目录机器学习与深度学习的区别一、引言二、机器学习概述1、机器学习定义1.1、机器学习的应用2、机器学习算法三、深度学习概述1、深度学习定义1.1、深度学习的应用2、深度学习算法四、机器学习与深度学习的区别1、学习方法2、数据需求3、应用领域五、总结机器学习与深度学习的区别一、引言在人工智能的浪潮中,机器学习和深度学习无疑是最耀眼的两颗明星。它们在许多领域都取得了令人瞩目的成就,从自动驾驶汽车到
- 机器学习和深度学习的区别
不会代码的小林
机器学习
机器学习和深度学习在多个方面存在显著的区别,以下是对这些区别的详细阐述:一、定义与起源机器学习:是人工智能的一个分支领域,它使计算机能够从数据中学习并改进其性能,而无需进行显式编程。机器学习起源于20世纪50年代,随着算法和计算能力的不断发展而逐渐成熟。深度学习:则是机器学习的一个子领域,它利用深度神经网络模型进行学习和预测。深度学习在21世纪初开始兴起,特别是随着大数据的普及和计算能力的显著提升
- 机器学习和深度学习区别
hong161688
机器学习深度学习人工智能
机器学习和深度学习作为人工智能领域的两大重要分支,虽然有着紧密的联系,但在多个方面存在显著的差异。以下将从定义与起源、技术基础、模型复杂度、数据需求、计算资源需求、应用领域以及学习方式与特点等角度,详细阐述机器学习和深度学习的区别。一、定义与起源机器学习:是人工智能的一个分支,它让计算机能够在没有明确编程的情况下,通过观察和分析大量数据来学习并做出预测或决策。机器学习起源于20世纪50年代,随着算
- TensorFlow库详解:Python中的深度学习框架
极客代码
玩转AI玩转Python开发语言pythonpygame
引言TensorFlow是由GoogleBrain团队开发的开源机器学习库,用于各种复杂的数学计算,特别是涉及深度学习的计算。它提供了大量工具和资源,用于构建和训练机器学习模型。TensorFlow因其强大的功能和灵活性,在机器学习和深度学习领域得到了广泛应用。一、TensorFlow的基本结构TensorFlow的核心是计算图,它是一种用于表示计算的图。这种图可以包含许多节点,每个节点代表一个操
- 理解Softmax函数的原理和实现
Ven%
深度学习基础动手自然语言处理人工智能深度学习机器学习python
Softmax函数是机器学习和深度学习中非常基础且重要的一个概念,特别是在处理分类问题时。它的作用是将一个向量中的元素值转换成概率分布,使得每个元素的值都在0到1之间,并且所有元素值的总和为1。原理Softmax函数的数学表达式定义如下:softmax(zi)=ezi∑jezj\text{softmax}(z_i)=\frac{e^{z_i}}{\sum_{j}e^{z_j}}softmax(zi
- 【机器学习-神经网络】循环神经网络
刷刷刷粉刷匠
机器学习神经网络rnn
在机器学习和深度学习的领域中,循环神经网络(RNN)作为一种处理序列数据的强大工具,已经在诸多应用场景中展现出了巨大的潜力。RNN能够有效地捕捉序列数据中的时序依赖关系,因此在自然语言处理、时间序列预测和语音识别等任务中发挥着至关重要的作用。本文将对RNN进行深入探讨,从其基本理论、工作原理到实际应用及代码实现,全面剖析RNN在现代机器学习中的应用价值。1.RNN基础理论1.1RNN概述循环神经网
- pytorch pyro更高阶的优化器会使用更高阶的导数,比如二阶导数(Hessian矩阵)
zhangfeng1133
pytorch矩阵人工智能
在机器学习和深度学习中,优化器是用来更新模型参数以最小化损失函数的算法。通常,优化器会计算损失函数相对于参数的一阶导数(梯度),然后根据这些梯度来更新参数。但是,更高阶的优化器会使用更高阶的导数,比如二阶导数(Hessian矩阵),来指导参数的更新关于使用更高阶导数的优化器基类的描述。在机器学习和深度学习中,优化器是用来更新模型参数以最小化损失函数的算法。通常,优化器会计算损失函数相对于参数的一阶
- 一文讲清楚,AI、AGI、AIGC与AIGC、NLP、LLM,ChatGPT等概念
GPT-Hub
人工智能自然语言处理agigptchatgpt机器学习神经网络
本文旨在深入解析人工智能(AI)、通用人工智能(AGI)、人工智能生成内容(AIGC)、自然语言处理(NLP)、大型语言模型(LLM)以及ChatGPT等关键概念,并探讨它们在现代科技发展中的重要性和实际应用。1.AI(人工智能)人工智能(AI)是指通过计算机技术来模仿、扩展甚至超越人类智能的广泛领域。AI并不局限于一种特定的技术,而是涵盖了多种技术手段,包括机器学习和深度学习等子领域。AI的应用
- windows系统huggingface连接不上的解决方案
herosunly
windowshuggingface连接不上解决方案
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- Langchain-Chatchat本地部署的解决方案
herosunly
大模型RAGlangchain-chat本地部署解决方案
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- 昇思25天学习打卡
十分钟ll
昇思25天学习打卡pythonpytorch视觉检测图像处理
@[TOC]《昇思25天学习打卡营第02天|lulul》张量Tensor张量tensor是在机器学习和深度学习中广泛应用的数据概念,张量是多维数组的泛化,能够表示标量(0维张量)、向量(1维张量)、矩阵(2维张量)及更高维的数组。张量基本用法(mindspore)data=[1,0,1,0]x_data=Tensor(data)print(x_data,x_data.shape,x_data.dt
- 机器学习和深度学习·贝叶斯优化和optuna
0xMayL
#深度学习机器学习#模型评估机器学习深度学习人工智能
贝叶斯优化贝叶斯优化的思想先验:取点似然:假设分布取了n个点之后…后验:近似取得极值贝叶斯优化的数学过程在贝叶斯优化的数学过程当中,我们主要执行以下几个步骤:1定义需要估计的f(x)f(x)f(x)以及xxx的定义域2取出有限的n个xxx上的值,求解出这些xxx对应的f(x)f(x)f(x)(求解观测值)3根据有限的观测值,对函数分布进行假设(该假设被称为贝叶斯优化中的先验知识),得出该假设分布上
- 机器学习和深度学习中常见损失函数,包括损失函数的数学公式、推导及其在不同场景中的应用
早起星人
机器学习深度学习人工智能
目录引言什么是损失函数?常见损失函数介绍3.1均方误差(MeanSquaredError,MSE)3.2交叉熵损失(Cross-EntropyLoss)3.3平滑L1损失(SmoothL1Loss)3.4HingeLoss(合页损失)3.5二进制交叉熵损失(BinaryCross-EntropyLoss)3.6KL散度(KLDivergence)3.7Huber损失(HuberLoss)3.8对比
- Datawhale AI夏令营-task03
ghost_him
人工智能
DatawhaleAI夏令营-task03笔记来源:DatawhaleAI夏令营数据增强基础数据增强是一种在机器学习和深度学习领域常用的技术,尤其是在处理图像和视频数据时。**数据增强的目的是通过人工方式增加训练数据的多样性,从而提高模型的泛化能力,使其能够在未见过的数据上表现得更好。**数据增强涉及对原始数据进行一系列的变换操作,生成新的训练样本。这些变换模拟了真实世界中的变化,对于图像而言,数
- 什么是损失函数?
翰霖努力成为专家
万能科普数据挖掘计算机视觉机器学习人工智能自然语言处理神经网络深度学习
损失函数(LossFunction)是在机器学习和深度学习中用来评估模型预测值与真实值之间差异的函数。它的主要目的是量化模型预测的错误程度,以便在训练过程中通过最小化这个错误来优化模型。在监督学习中,我们通常有一组训练数据,包括输入特征(X)和对应的真实标签(Y)。模型的目标是学习一个从输入特征到输出标签的映射函数。损失函数就是用来衡量模型在这个映射过程中产生的误差的函数。不同类型的任务会使用不同
- 基于华为昇腾910B和LLaMA Factory多卡微调的实战教程
herosunly
大模型微调华为昇腾910B多卡微调实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- 24.8.26学习心得
kkkkk021106
人工智能
验证数据集(ValidationSet)和测试数据集(TestSet)在机器学习和深度学习中都是非常重要的概念。它们各自有不同的用途和目的。下面详细解释两者之间的区别:1.验证数据集(ValidationSet)目的:超参数调整:验证数据集主要用于调整模型的超参数,如学习率、正则化系数、网络层数等。模型选择:用于选择最佳模型。例如,在交叉验证中,通过在验证数据集上的表现来选择性能最好的模型。防止过
- 最新基于MATLAB机器学习、深度学习实践技术应用
weixin_贾
python深度学习MATLAB编程matlab机器学习深度学习
近年来,MATLAB在机器学习和深度学习领域的发展取得了显著成就。其强大的计算能力和灵活的编程环境使其成为科研人员和工程师的首选工具。在无人驾驶汽车、医学影像智能诊疗、ImageNet竞赛等热门领域,MATLAB提供了丰富的算法库和工具箱,极大地推动了人工智能技术的应用和创新。系统学习机器学习和深度学习的理论知识及对应的代码实现方法,掌握图像处理的基础知识,以及经典机器学习算法和最新的深度神经网络
- 神奇的微积分
科学的N次方
人工智能人工智能ai
微积分在人工智能(AI)领域扮演着至关重要的角色,以下是其主要作用:优化算法:•梯度下降法:微积分中的导数被用来计算损失函数相对于模型参数的梯度,这是许多机器学习和深度学习优化算法的核心。梯度指出了函数值增加最快的方向,通过沿着负梯度方向更新权重,可以最小化损失函数并优化模型。•反向传播:在神经网络训练中,微积分的链式法则用于计算整个网络中每个参数对于最终损失函数的影响(偏导数),这一过程就是反向
- AI相关技能
liuhehe321
人工智能
AI相关掌握Python语言,了解基本的机器学习和深度学习神经网络算法,会使用PyTorch框架进行深度学习模型训练,例如基于生成对抗网络的图像恢复处理对视频,文本、Embedding等的特征数据进行存储管理和分发的平台,存在共计7亿左右的特征数据,读取5K,写入2K左右的访问量,并对同一个特征有读写不同特征版本的需求•拥有MATLAB,R,SAS等语言3年以上的应用经验;•熟悉Python语言及
- 【深入了解PyTorch】模型优化和加速:PyTorch优化技术与库的应用
prince_zxill
Python实战教程人工智能与机器学习教程pytorch人工智能python
【深入了解PyTorch】模型优化和加速:PyTorch优化技术与库的应用模型优化和加速:PyTorch优化技术与库的应用模型剪枝(ModelPruning)模型量化(ModelQuantization)混合精度训练(MixedPrecisionTraining)总结模型优化和加速:PyTorch优化技术与库的应用在机器学习和深度学习领域,模型的性能和效率一直是研究和应用的重要关注点。随着模型越来
- AI手机是什么原理
小黄人软件
人工智能智能手机
AI手机,即搭载人工智能技术的智能手机,基于几个核心原理和技术来提升用户体验和手机的智能化程度。这些原理主要包括:机器学习和深度学习:AI手机利用机器学习算法,尤其是深度学习模型,来分析和理解用户数据(如照片、视频、文本和语音)。这些技术使得手机能够提供个性化的用户体验,比如智能推荐、语音识别和图像识别。自然语言处理(NLP):AI手机使用NLP技术来理解和生成人类语言,使得用户可以通过语音命令与
- 深度学习从入门到不想放弃-1
周博洋K
深度学习人工智能
基本功总是很香的,良好的基础才能决定上层建筑的质量和高度。从今天开始陆续连载一些深度学习的基础,包括概念,数学原理,代码,最近也确实没什么热点可以蹭先看机器学习和深度学习的对比:"数据和特征决定了机器学习的上限,而模型与算法则是逼近这个上限而已",机器学习和深度学习的本质区别之一是特征工程,而特征工程又是决定最终结果好坏的最重要的因素之一;上图最上面描述是机器学习的流程,如果让一个计算机理解输入的
- 如何学习和规划类似ChatGPT这种人工智能(AI)相关技术
ABEL in China
学习chatgpt人工智能
学习和规划类似ChatGPT这种人工智能(AI)相关技术的路径通常包括以下步骤:学习基础知识:学习编程:首先,你需要学习一种编程语言,例如Python,这是大多数人工智能项目的首选语言。数学基础:深度学习和自然语言处理等领域需要一定的数学基础,包括线性代数、微积分和概率统计。掌握机器学习和深度学习:了解机器学习和深度学习的基本概念,例如神经网络、卷积神经网络(CNN)和递归神经网络(RNN)。学习
- 生成式网络与判别式网络
一条小小yu
深度学习人工智能
生成式网络(GenerativeNetworks)和判别式网络(DiscriminativeNetworks)是两类在机器学习和深度学习中常见的网络类型,它们在数据处理和学习任务中扮演不同的角色。生成式网络(GenerativeNetworks)生成式网络旨在学习数据的分布,以便能够生成新的、之前未见过的数据点,这些数据点与训练集中的数据具有相同的分布。简而言之,生成式网络能够“生成”数据。这类网
- 预训练和微调在迁移学习中的作用
一条小小yu
迁移学习人工智能机器学习
在机器学习和深度学习中,"pre-training"(预训练)和"fine-tuning"(微调)是两个常见且重要的概念,它们通常在迁移学习场景中使用,以提高模型在特定任务上的性能。预训练(Pre-training)预训练是指在一个大型且通常与目标任务相关但不完全相同的数据集上训练模型的过程。这个阶段的目的是让模型学习到一些通用的特征或知识,这些特征或知识可以帮助模型在后续的特定任务上表现更好。预
- 初学者入门机器学习 (ML)的推荐教程
suoge223
机器学习实用指南机器学习人工智能
目录1.机器学习简介2.机器学习和深度学习有什么区别?3.机器学习的日常应用4.类型和分类5.理解机器学习算法6.偏差和方差7.评估指标8.从头开始构建MLWeb应用程序9.ML和Python教程编辑了解基本的机器学习概念并不难。有大量免费的在线博客文章、视频和编码教程可以引导您了解基础知识——从介绍性内容到常见应用程序,再到算法和应用技能。这些博客和教程并非晦涩难懂的公式和理论,而是从开始的通俗
- 手把手教你完成深度学习人脸识别系统
挂科边缘(毕业版)
pthon大作业系列深度学习人工智能opencvtensorflow
目录前言一、系统总流程设计二、环境安装1.创建虚拟环境2.安装其他库三、模型搭建1.采集数据集2.数据预处理3.构建模型和训练五、摄像头测试六、界面搭建报错了并解决的方法总结前言随着人工智能的不断发展,机器学习和深度学习这门技术也越来越重要,一时间成为码农的学习热点。下面将使用深度学习技术开发一个人脸识别系统一、系统总流程设计二、环境安装手把手教学视频:链接:link1.创建虚拟环境condacr
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul