- Tensorflow 实现 Word2Vec
王小鸟_wpcool
今天学习了一下《Tensorflow实战》这本书中第7章内容,利用tensorflow实现word2vec。其实书中内容就是Tensorflow教程中的例子,现在挣钱真容易。附链接https://github.com/tensorflow/tensorflow/blob/r0.12/tensorflow/examples/tutorials/word2vec/word2vec_basic.py代码
- 深度学习的发展历程
SnowScholar
深度学习机器学习深度学习神经网络发展历程
参考书籍《Tensorflow实战Google深度学习框架》郑泽宇等要想学习深度学习这门技术,那么有必要对其发展作一定程度的了解。深度学习其实不是一门新技术,目前大家熟悉的“深度学习”基本上是深度神经网络的一个代名词,神经网络技术可追溯到1943年。深度学习之所以被人们认为是新技术,那是因为它在21世纪初并不流行。神经网络的发展不是一番风顺,它的发展经历了三个起落,也可分为三个阶段。第一阶段:受到
- Tensorflow实战深度学习笔记一
独立开发者Lau
人类直观能力----人工智能(自然语言理解、图像识别、语音识别等)。经验----机器学习。训练----特征相关度。特征提取深度学习---自动地将简单的特征组合成更加复杂的特征,并使用这些复杂特征解决问题。深度学习--------不等于模仿人类大脑。
- 4.3 TensorFlow实战三(3):MNIST手写数字识别问题-多层神经网络模型
大白猿学习笔记
一、多层神经网络解决MNIST问题1.构建多层神经网络模型在4.2节我们使用了单层神经网络来解决MNIST手写数字识别问题,提高了识别性能。很容易想到,能否增加隐藏层数量来进一步提高模型预测的的准确率。这一节我们尝试构建两层神经网络模型。代码方面,只需要修改隐藏层构建到输出层构建的一部分即可#构建多隐藏层(2层)H1_NN=256#第1隐藏层神经元的数量w1=tf.Variable(tf.rand
- TensorFlow实战教程(三十五)-VS Code配置Python编程和Keras环境及手写数字识别(基础篇)
张志翔的博客
TensorFlow实战教程pythontensorflowkeras
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章利用Keras构建无监督学习Autoencoder模型并实现聚类分析。这篇文章将介绍基础知识,因为很多读者咨询我如何用VSCode配置Keras深度学习环境,并对比常用的深度学习框架,最后普及手写数字识别案例。基础性文章,希望对您有所帮助一.VSCode安装Python在介绍代码之前,先讲解Python常用的开发
- TensorFlow实战教程(二十五)-基于BiLSTM-CRF的医学命名实体识别研究(下)模型构建
张志翔的博客
TensorFlow实战教程tensorflow人工智能python
这篇文章写得很冗余,但是我相信你如果真的看完,并且按照我的代码和逻辑进行分析,对您以后的数据预处理和命名实体识别都有帮助,只有真正对这些复杂的文本进行NLP处理后,您才能适应更多的真实环境,坚持!毕竟我写的时候也看了20多小时的视频,又写了20多个小时,别抱怨,加油~上一篇文章处理后的数据格式如下图所示,将一个个句子处理成了包含六元组的CSV文件,这篇文章将介绍BiLSTM-CRF模型搭建及训练、
- TensorFlow实战教程(十九)-Keras搭建循环神经网络分类案例及RNN原理详解
张志翔的博客
TensorFlow实战教程tensorflowkerasrnn
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章分享了卷积神经网络CNN原理,并通过Keras编写CNN实现了MNIST分类学习案例。这篇文章将详细讲解循环神经网络RNN的原理知识,并采用Keras实现手写数字识别的RNN分类案例及可视化呈现。基础性文章,希望对您有所帮助!一.循环神经网络在编写代码之前,我们需要介绍什么是RNN,RNN是怎样运行的以及RNN的
- TensorFlow实战教程(二十四)-基于BiLSTM-CRF的医学命名实体识别研究(上)数据预处理
张志翔的博客
TensorFlow实战教程tensorflow人工智能python
这篇文章写得很冗余,但是我相信你如果真的看完,并且按照我的代码和逻辑进行分析,对您以后的数据预处理和命名实体识别都有帮助,只有真正对这些复杂的文本进行NLP处理后,您才能适应更多的真实环境,坚持!毕竟我写的时候也看了20多小时的视频,又写了20多个小时,别抱怨,加油~一.什么是命名实体识别实体是知识图谱最重要的组成,命名实体识别(NamedEntityRecognition,NER)对于知识图谱构
- TensorFlow实战教程(二十八)-Keras实现BiLSTM微博情感分类和LDA主题挖掘分析
张志翔的博客
TensorFlow实战教程tensorflowkeras分类
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章通过Keras深度学习构建CNN模型识别阿拉伯手写文字图像,一篇非常经典的图像分类文字。这篇文章将结合文本挖掘介绍微博情感分类知识,包括数据预处理、机器学习和深度学习的情感分类,后续结合LDA进行主题挖掘。基础性文章,希望对您有所帮助!一.BiLSTM模型LSTM的全称是LongShort-TermMemory,
- TensorFlow实战教程(一)-TensorFlow环境部署
张志翔的博客
TensorFlow实战教程tensorflow人工智能python
从本篇文章开始,作者正式开始研究Python深度学习、神经网络及人工智能相关知识。第一篇文章主要讲解神经网络基础概念,同时讲解TensorFlow2.0的安装过程及基础用法,主要结合作者之前的博客和"莫烦大神"的视频介绍,后面随着深入会讲解具体的项目及应用。基础性文章,希望对您有所帮助,如果文章中存在错误或不足之处,还请海涵~同时自己也是人工智能的菜鸟,希望大家能与我在这一笔一划的博客中成长起来。
- TensorFlow实战教程(十七)-Keras搭建分类神经网络及MNIST数字图像案例分析
张志翔的博客
TensorFlow实战教程tensorflowkeras分类
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章详细讲解了Keras环境搭建、入门基础及回归神经网络案例。本篇文章将通过Keras实现分类学习,以MNIST数字图片为例进行讲解。基础性文章,希望对您有所帮助!一.什么是分类学习1.Classification我们之前文章解决的都是回归问题,它预测的是一个连续分布的值,例如房屋的价格、汽车的速度、Pizza的价格
- [TensorFlow 学习笔记-03]TensorFlow简介
caicaiatnbu
TensorFlow学习笔记深度学习TensorFlow
[版权说明]TensorFlow学习笔记参考:李嘉璇著TensorFlow技术解析与实战黄文坚唐源著TensorFlow实战郑泽宇顾思宇著TensorFlow实战Google深度学习框架乐毅王斌著深度学习-Caffe之经典模型详解与实战TensorFlow中文社区http://www.tensorfly.cn/极客学院著TensorFlow官方文档中文版TensorFlow官方文档英文版以及各位大
- 免费教材丨第55期:Python机器学习实践指南、Tensorflow 实战Google深度学习框架
人工智能爱好者俱乐部
小编说时间过的好快啊,小伙伴们是不是都快进入寒假啦?但是学习可不要落下哦!本期教材本期为大家发放的教材为:《Python机器学习实践指南》、《Tensorflow实战Google深度学习框架》两本书,大家可以根据自己的需要阅读哦!《Python机器学习实践指南》内容简介机器学习是近年来渐趋热门的一个领域,同时Python语言经过一段时间的发展也已逐渐成为主流的编程语言之一。本书结合了机器学习和Py
- Tensorflow入门(七)——CNN经典模型:LeNet
陈陈陈Chann
#Tensorflow卷积神经网络tensorflow深度学习机器学习
上一节《Tensorflow入门(六)——初识卷积神经网络(CNN)》实战篇《Tensorflow实战(二)——MNIST(CNN实现)》原文链接:https://my.oschina.net/u/876354/blog/1632862本文在原文基础上进行细微的修改和完善。文章目录1.CNN的三个特点1.1局部感知1.2参数(权值)共享1.3池化2.LeNet52.1C1层(卷积层):6@28×2
- 深度之眼-机器学习总结
任嘉平生愿
为期三个月的西瓜书机器学习训练营结束,昨天听完了毕业典礼。我做了如下总结:校长讲话:定目标短时间自己的小团队闭环开环闭环----学习小部分就应用时间和努力的堆积打比赛应用人工智能的课题和方向资料tensorflow实战google深度学习框架和强者学习才会遇强则强博士讲话:1.坚持写博客2.github3.多练习4.英文原版的文章高级课程你目前的弱点是什么5.多读论文
- 机器学习(19)---神经网络详解
冒冒菜菜
机器学习从0到1机器学习人工智能神经网络笔记
神经网络一、神经网络概述1.1神经元模型1.2激活函数二、感知机2.1概述2.2实现逻辑运算2.3多层感知机三、神经网络3.1工作原理3.2前向传播3.3Tensorflow实战演示3.3.1导入数据集查看3.3.2数据预处理3.3.3建立模型3.3.4评估模型四、反向传播五、例题5.1题15.2题2一、神经网络概述1.1神经元模型 1.这里采用最广泛一种定义:神经网络是由适应性的简单单元组成的广
- TensorFlow实战(五)Deep Dream(计算机生成梦幻图像)——理解深度神经网络结构及应用
young974
一、疑问卷积层究竟学到了什么内容?同一卷积层中不同通道学习到的内容有什么区别?浅层的卷积和深层的卷积学习到的内容有什么区别?二、DeepDream技术原理DeepDream生成梦幻图像1.利用CNN进行图像分类:CNN的图像分类2.DeepDream使用梯度上升的方法可视化网络每一层的特征,即用一张噪声图像输入网络,反向更新的时候不更新网络权重,而是更新初始图像的像素值,(这里卷积神经网络是固定的
- 机器学习实战:Python基于NN神经网络进行分类(十一)
Bioinfo Guy
机器学习Python机器学习python神经网络
文章目录1前言1.1神经网络的介绍1.2神经网络的应用2.Tensorflow实战演示2.1导入函数2.2导入数据2.3数据预处理2.4建立神经网络2.5训练模型2.6评估模型2.7预测3.讨论1前言神经网络(Neuralnetwork,NN)机器学习是一种基于人工神经网络的机器学习方法,它模拟了人类神经系统的工作原理。神经网络是由多个人工神经元组成的网络结构,每个神经元都接收输入信号、进行计算并
- 【Manning2022新书】TensorFlow实战
数据派THU
神经网络机器学习人工智能深度学习java
来源:专知本文为书籍介绍,建议阅读5分钟TensorFlowinAction教你使用TensorFlow2构建、训练和部署深度学习模型。TensorFlowinAction教你使用TensorFlow2构建、训练和部署深度学习模型。在本实用教程中,您将在创建可用于生产的应用(如法语-英语翻译程序和可以编写小说的神经网络)时,亲自构建可重用的技能。您将欣赏从DL基础知识到NLP、图像处理和MLOps
- 深度学习02-神经网络(MLP多层感知器)
liaomin416100569
深度学习神经网络人工智能
文章目录神经网络简介学习路径分类多层感知器(MLP)神经网络认识两层神经网络输入层从输入层到隐藏层从隐藏层到输出层激活层输出的正规化如何衡量输出的好坏反向传播与参数优化过拟合BP算法推导定义算法讲解前向传播反向传播具体实例tensorflow实战加载数据集数据预处理one-host编码keras.utils.to_categorical()构造多层感知器模型tf.keras.Sequentialk
- TensorFlow实战--使用神经网络来实现对鸢尾花数据集的分类
C君莫笑
人生苦短-我用Pythontensorflowpython机器学习
利用单层神经网络实现对鸢尾花数据集的分类使用没有隐含层的单层前馈型神经网络来实现对鸢尾花的分类importpandasaspdimportnumpyasnpimporttensorflowastftf.enable_eager_execution()#关键importmatplotlib.pyplotaspltplt.rcParams['font.sans-serif']="SimHei"plt.
- 线性回归详解及Tensorflow实战
lmn_
AI人工智能AI线性回归算法
0x01线性回归概述线性回归()是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法其表达形式为y=w'x+e,e为误差服从均值为0的正态分布线性回归可能是统计学和机器学习中最著名和最容易理解的算法之一在统计学中,线性回归是一种对标量响应和一个或多个解释变量(也称为因变量和自变量)之间的关系进行建模的线性方法一个解释变量的情况称为简单线性回归(simplelin
- 机器学习笔记(十三):TensorFlow实战五(经典卷积神经网络: LeNet -5 )
LiAnG小炜
机器学习笔记
1-引言之前我们介绍了一下卷积神经网络的基本结构——卷积层和池化层。通过这两个结构我们可以任意的构建各种各样的卷积神经网络模型,不同结构的网络模型也有不同的效果。但是怎样的神经网络模型具有比较好的效果呢?下图展示了CNN的发展历程。经过人们不断的尝试,诞生了许多有有着里程碑式意义的CNN模型。因此我们接下来会学习这些非常经典的卷积神经网络LeNet-5AlexNetVGGInceptionResN
- Tensorflow-图像处理视频课程-唐宇迪-专题视频课程
迪哥有点愁了
视频教程图像处理深度学习tensorflow机器学习人工智能
Tensorflow-图像处理视频课程—491人已学习课程介绍课程以Tensorflow作为核心武器,基于图像处理热点话题进行案例实战。选择当下热门模型,使用真实数据集进行实战演示,通俗讲解整个算法模型并使用tensorflow进行实战,详解其中的原理与代码实现。课程收益掌握如何使用Tensorflow进行图像处理并使用tensorflow实战。讲师介绍唐宇迪更多讲师课程计算机博士,专注于机器学习
- 深度学习之TensorFlow实战2
Mr Robot
深度学习TensorFlow人工智能人工智能深度学习tensorflowpython
TensorFlow基本概念图(Graph):图描述了计算的过程,TensorFlow使用图来表示计算任务。张量(Tensor):TensorFlow使用tensor表示数据。每个Tensor是一个类型化的多维数组。操作(op):图中的节点被称为op(opearation的缩写),一个op获得0个或多个Tensor,执行计算,产生0个或多个Tensor。会话(Session):图必须在称之为“会话
- Day1 #100DaysofMLCoding#
MWhite
2018-8-6个人前置条件:已经将《统计学习方法》《机器学习实战》一刷80%西瓜书一刷50%,tensorflow实战一刷70%kaggle上参与过titanic(Top6%)和数字识别(Top12%)比较了解pandas,numpy,matplotlib,seaborn,tensorflow,sklearn今日计划复习数学模型基础看深度学习博客——太长了悠闲时看视觉CV博客一colah个人博客
- TensorFlow实战(四)MNIST手写数字识别进阶——单、多隐层全连接网络
young974
上节手写数字识别入门用的是单个神经元来处理分类问题,准确率达0.8619。这一节做一些改进,以单隐含层全连接网络为例,可使准确率达0.9744。后进一步调整隐含层数测试发现,加入不同层数隐含层达到的准确率,3层>单层>2层。说明神经网络的层数未必越多越好。单个神经元模型全连接单隐藏层神经网络导入数据集importtensorflowastfimporttensorflow.examples.tut
- TensorFlow实战:LSTM的结构与cell中的参数
星之所望
python
一些参数训练的话一般一批一批训练,即让batch_size个句子同时训练;每个句子的单词个数为num_steps,由于句子长度就是时间长度,因此用num_steps代表句子长度。在NLP问题中,我们用词向量表示一个单词(一个数基本不能表示一个词,大家应该都知道的吧,可以去了解下词向量),我们设定词向量的长度为wordvec_size。LSTM结构中是一个神经网络,即下图的结构就是一个LSTM单元,
- 图像风格快速迁移tensorflow实战
sk千空
一个代码篮子1024程序员节tensorflowpython机器学习深度学习
引言需要解决的问题是:利用tensorflow的快速风格迁移功能,把一张qq的logo图片转换成《星空》油画的风格,并打印输出。如图所示,最右边图像是输入结果,左边两图是输入:一、操作步骤通过两天的学习,修了许多bug,踩了不少坑,终于把实验做成了。现在试着阐述相关的原理和具体操作步骤。这里我把整个实验过程分为4大部分,每个部分都会给出详细的操作步骤。A.软件的安装和配置B.风格迁移代码的理解和操
- 机器学习笔记(十二):TensorFlow实战四(图像识别与卷积神经网络)
LiAnG小炜
机器学习笔记深度学习图像识别卷积神经网络人工智能
1-卷积神经网络常用结构1.1-卷积层我们先来介绍卷积层的结构以及其前向传播的算法。一个卷积层模块,包含以下几个子模块:使用0扩充边界(padding)卷积窗口过滤器(filter)前向卷积反向卷积(可选)1.1.2-边界填充边界填充将会在图像边界周围添加值为0的像素点,如下图所示:使用0填充边界有以下好处:卷积了上一层之后的CONV层,没有缩小高度和宽度,这对建立更深的网络非常重要,否则在更深层
- java的(PO,VO,TO,BO,DAO,POJO)
Cb123456
VOTOBOPOJODAO
转:
http://www.cnblogs.com/yxnchinahlj/archive/2012/02/24/2366110.html
-------------------------------------------------------------------
O/R Mapping 是 Object Relational Mapping(对象关系映
- spring ioc原理(看完后大家可以自己写一个spring)
aijuans
spring
最近,买了本Spring入门书:spring In Action 。大致浏览了下感觉还不错。就是入门了点。Manning的书还是不错的,我虽然不像哪些只看Manning书的人那样专注于Manning,但怀着崇敬 的心情和激情通览了一遍。又一次接受了IOC 、DI、AOP等Spring核心概念。 先就IOC和DI谈一点我的看法。IO
- MyEclipse 2014中Customize Persperctive设置无效的解决方法
Kai_Ge
MyEclipse2014
高高兴兴下载个MyEclipse2014,发现工具条上多了个手机开发的按钮,心生不爽就想弄掉他!
结果发现Customize Persperctive失效!!
有说更新下就好了,可是国内Myeclipse访问不了,何谈更新...
so~这里提供了更新后的一下jar包,给大家使用!
1、将9个jar复制到myeclipse安装目录\plugins中
2、删除和这9个jar同包名但是版本号较
- SpringMvc上传
120153216
springMVC
@RequestMapping(value = WebUrlConstant.UPLOADFILE)
@ResponseBody
public Map<String, Object> uploadFile(HttpServletRequest request,HttpServletResponse httpresponse) {
try {
//
- Javascript----HTML DOM 事件
何必如此
JavaScripthtmlWeb
HTML DOM 事件允许Javascript在HTML文档元素中注册不同事件处理程序。
事件通常与函数结合使用,函数不会在事件发生前被执行!
注:DOM: 指明使用的 DOM 属性级别。
1.鼠标事件
属性  
- 动态绑定和删除onclick事件
357029540
JavaScriptjquery
因为对JQUERY和JS的动态绑定事件的不熟悉,今天花了好久的时间才把动态绑定和删除onclick事件搞定!现在分享下我的过程。
在我的查询页面,我将我的onclick事件绑定到了tr标签上同时传入当前行(this值)参数,这样可以在点击行上的任意地方时可以选中checkbox,但是在我的某一列上也有一个onclick事件是用于下载附件的,当
- HttpClient|HttpClient请求详解
7454103
apache应用服务器网络协议网络应用Security
HttpClient 是 Apache Jakarta Common 下的子项目,可以用来提供高效的、最新的、功能丰富的支持 HTTP 协议的客户端编程工具包,并且它支持 HTTP 协议最新的版本和建议。本文首先介绍 HTTPClient,然后根据作者实际工作经验给出了一些常见问题的解决方法。HTTP 协议可能是现在 Internet 上使用得最多、最重要的协议了,越来越多的 Java 应用程序需
- 递归 逐层统计树形结构数据
darkranger
数据结构
将集合递归获取树形结构:
/**
*
* 递归获取数据
* @param alist:所有分类
* @param subjname:对应统计的项目名称
* @param pk:对应项目主键
* @param reportList: 最后统计的结果集
* @param count:项目级别
*/
public void getReportVO(Arr
- 访问WEB-INF下使用frameset标签页面出错的原因
aijuans
struts2
<frameset rows="61,*,24" cols="*" framespacing="0" frameborder="no" border="0">
- MAVEN常用命令
avords
Maven库:
http://repo2.maven.org/maven2/
Maven依赖查询:
http://mvnrepository.com/
Maven常用命令: 1. 创建Maven的普通java项目: mvn archetype:create -DgroupId=packageName 
- PHP如果自带一个小型的web服务器就好了
houxinyou
apache应用服务器WebPHP脚本
最近单位用PHP做网站,感觉PHP挺好的,不过有一些地方不太习惯,比如,环境搭建。PHP本身就是一个网站后台脚本,但用PHP做程序时还要下载apache,配置起来也不太很方便,虽然有好多配置好的apache+php+mysq的环境,但用起来总是心里不太舒服,因为我要的只是一个开发环境,如果是真实的运行环境,下个apahe也无所谓,但只是一个开发环境,总有一种杀鸡用牛刀的感觉。如果php自己的程序中
- NoSQL数据库之Redis数据库管理(list类型)
bijian1013
redis数据库NoSQL
3.list类型及操作
List是一个链表结构,主要功能是push、pop、获取一个范围的所有值等等,操作key理解为链表的名字。Redis的list类型其实就是一个每个子元素都是string类型的双向链表。我们可以通过push、pop操作从链表的头部或者尾部添加删除元素,这样list既可以作为栈,又可以作为队列。
&nbs
- 谁在用Hadoop?
bingyingao
hadoop数据挖掘公司应用场景
Hadoop技术的应用已经十分广泛了,而我是最近才开始对它有所了解,它在大数据领域的出色表现也让我产生了兴趣。浏览了他的官网,其中有一个页面专门介绍目前世界上有哪些公司在用Hadoop,这些公司涵盖各行各业,不乏一些大公司如alibaba,ebay,amazon,google,facebook,adobe等,主要用于日志分析、数据挖掘、机器学习、构建索引、业务报表等场景,这更加激发了学习它的热情。
- 【Spark七十六】Spark计算结果存到MySQL
bit1129
mysql
package spark.examples.db
import java.sql.{PreparedStatement, Connection, DriverManager}
import com.mysql.jdbc.Driver
import org.apache.spark.{SparkContext, SparkConf}
object SparkMySQLInteg
- Scala: JVM上的函数编程
bookjovi
scalaerlanghaskell
说Scala是JVM上的函数编程一点也不为过,Scala把面向对象和函数型编程这两种主流编程范式结合了起来,对于熟悉各种编程范式的人而言Scala并没有带来太多革新的编程思想,scala主要的有点在于Java庞大的package优势,这样也就弥补了JVM平台上函数型编程的缺失,MS家.net上已经有了F#,JVM怎么能不跟上呢?
对本人而言
- jar打成exe
bro_feng
java jar exe
今天要把jar包打成exe,jsmooth和exe4j都用了。
遇见几个问题。记录一下。
两个软件都很好使,网上都有图片教程,都挺不错。
首先肯定是要用自己的jre的,不然不能通用,其次别忘了把需要的lib放到classPath中。
困扰我很久的一个问题是,我自己打包成功后,在一个同事的没有装jdk的电脑上运行,就是不行,报错jvm.dll为无效的windows映像,如截图
最后发现
- 读《研磨设计模式》-代码笔记-策略模式-Strategy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化
简单理解:
1、将不同的策略提炼出一个共同接口。这是容易的,因为不同的策略,只是算法不同,需要传递的参数
- cmd命令值cvfM命令
chenyu19891124
cmd
cmd命令还真是强大啊。今天发现jar -cvfM aa.rar @aaalist 就这行命令可以根据aaalist取出相应的文件
例如:
在d:\workspace\prpall\test.java 有这样一个文件,现在想要将这个文件打成一个包。运行如下命令即可比如在d:\wor
- OpenJWeb(1.8) Java Web应用快速开发平台
comsci
java框架Web项目管理企业应用
OpenJWeb(1.8) Java Web应用快速开发平台的作者是我们技术联盟的成员,他最近推出了新版本的快速应用开发平台 OpenJWeb(1.8),我帮他做做宣传
OpenJWeb快速开发平台以快速开发为核心,整合先进的java 开源框架,本着自主开发+应用集成相结合的原则,旨在为政府、企事业单位、软件公司等平台用户提供一个架构透
- Python 报错:IndentationError: unexpected indent
daizj
pythontab空格缩进
IndentationError: unexpected indent 是缩进的问题,也有可能是tab和空格混用啦
Python开发者有意让违反了缩进规则的程序不能通过编译,以此来强制程序员养成良好的编程习惯。并且在Python语言里,缩进而非花括号或者某种关键字,被用于表示语句块的开始和退出。增加缩进表示语句块的开
- HttpClient 超时设置
dongwei_6688
httpclient
HttpClient中的超时设置包含两个部分:
1. 建立连接超时,是指在httpclient客户端和服务器端建立连接过程中允许的最大等待时间
2. 读取数据超时,是指在建立连接后,等待读取服务器端的响应数据时允许的最大等待时间
在HttpClient 4.x中如下设置:
HttpClient httpclient = new DefaultHttpC
- 小鱼与波浪
dcj3sjt126com
一条小鱼游出水面看蓝天,偶然间遇到了波浪。 小鱼便与波浪在海面上游戏,随着波浪上下起伏、汹涌前进。 小鱼在波浪里兴奋得大叫:“你每天都过着这么刺激的生活吗?简直太棒了。” 波浪说:“岂只每天过这样的生活,几乎每一刻都这么刺激!还有更刺激的,要有潮汐变化,或者狂风暴雨,那才是兴奋得心脏都会跳出来。” 小鱼说:“真希望我也能变成一个波浪,每天随着风雨、潮汐流动,不知道有多么好!” 很快,小鱼
- Error Code: 1175 You are using safe update mode and you tried to update a table
dcj3sjt126com
mysql
快速高效用:SET SQL_SAFE_UPDATES = 0;下面的就不要看了!
今日用MySQL Workbench进行数据库的管理更新时,执行一个更新的语句碰到以下错误提示:
Error Code: 1175
You are using safe update mode and you tried to update a table without a WHERE that
- 枚举类型详细介绍及方法定义
gaomysion
enumjavaee
转发
http://developer.51cto.com/art/201107/275031.htm
枚举其实就是一种类型,跟int, char 这种差不多,就是定义变量时限制输入的,你只能够赋enum里面规定的值。建议大家可以看看,这两篇文章,《java枚举类型入门》和《C++的中的结构体和枚举》,供大家参考。
枚举类型是JDK5.0的新特征。Sun引进了一个全新的关键字enum
- Merge Sorted Array
hcx2013
array
Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.
Note:You may assume that nums1 has enough space (size that is
- Expression Language 3.0新特性
jinnianshilongnian
el 3.0
Expression Language 3.0表达式语言规范最终版从2013-4-29发布到现在已经非常久的时间了;目前如Tomcat 8、Jetty 9、GlasshFish 4已经支持EL 3.0。新特性包括:如字符串拼接操作符、赋值、分号操作符、对象方法调用、Lambda表达式、静态字段/方法调用、构造器调用、Java8集合操作。目前Glassfish 4/Jetty实现最好,对大多数新特性
- 超越算法来看待个性化推荐
liyonghui160com
超越算法来看待个性化推荐
一提到个性化推荐,大家一般会想到协同过滤、文本相似等推荐算法,或是更高阶的模型推荐算法,百度的张栋说过,推荐40%取决于UI、30%取决于数据、20%取决于背景知识,虽然本人不是很认同这种比例,但推荐系统中,推荐算法起的作用起的作用是非常有限的。
就像任何
- 写给Javascript初学者的小小建议
pda158
JavaScript
一般初学JavaScript的时候最头痛的就是浏览器兼容问题。在Firefox下面好好的代码放到IE就不能显示了,又或者是在IE能正常显示的代码在firefox又报错了。 如果你正初学JavaScript并有着一样的处境的话建议你:初学JavaScript的时候无视DOM和BOM的兼容性,将更多的时间花在 了解语言本身(ECMAScript)。只在特定浏览器编写代码(Chrome/Fi
- Java 枚举
ShihLei
javaenum枚举
注:文章内容大量借鉴使用网上的资料,可惜没有记录参考地址,只能再传对作者说声抱歉并表示感谢!
一 基础 1)语法
枚举类型只能有私有构造器(这样做可以保证客户代码没有办法新建一个enum的实例)
枚举实例必须最先定义
2)特性
&nb
- Java SE 6 HotSpot虚拟机的垃圾回收机制
uuhorse
javaHotSpotGC垃圾回收VM
官方资料,关于Java SE 6 HotSpot虚拟机的garbage Collection,非常全,英文。
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning
&