灰色系统理论及其应用 (七) :道路交通事故灰色 Verhulst 预测模型


灰色系统理论及其应用系列博文:

灰色系统理论及其应用 (一) :灰色系统概论、关联分析、与传统统计方法的比较

灰色系统理论及其应用 (二) :优势分析

灰色系统理论及其应用 (三) :生成数

灰色系统理论及其应用 (四) :灰色模型 GM

灰色系统理论及其应用 (五) :灰色预测

灰色系统理论及其应用 (六) :SARS 疫情对某些经济指标影响问题

灰色系统理论及其应用 (七) :道路交通事故灰色 Verhulst 预测模型

灰色系统理论及其应用 (八) :GM(2,1)和 DGM 模型

灰色系统理论及其应用 (九) : GM(1, N) 和GM(0, N) 模型


目录

1 Verhulst 模型简介                                              参数列的最小二乘估计

2 道路交通事故 Verhulst 预测模型                        3 预测结果比较                              4 结语


灰色预测是通过原始数据的处理和灰色模型的建立,发现和掌握系统发展规律,对 系统的未来状态作出科学的定量预测。目前应用较多的灰色预测模型是 GM(1,1)模型、 灰色马尔可夫预测模型等,可用于预测交通事故发生次数、死亡人数、受伤人数和财产 损失等指标。GM(1,1)模型适用于具有较强指数规律的序列,只能描述单调的变化过程。但是道路交通系统是一个动态的时变系统,道路交通事故作为道路系统的行为特征量, 具有一定的随机波动性,它的发展呈现某种变化趋势的非平稳随机过程,因此可建立交 通事故灰色马尔可夫预测模型,以提高预测精度。但灰色马尔可夫预测模型的应用难点 是如何进行状态划分,故对于非单调的摆动发展序列具有饱和状态的 S 形序列, Verhulst 模型,GM(2,1)模型等更适用

Verhulst 模型主要用来描述具有饱和状态的过程, 即 S 形过程,常用于人口预测、生物生长、繁殖预测及产品经济寿命预测等。今年来 中国道路交通事故表现为具有饱和状态的 S 形过程,故可采用 Verhulst 模型对其进行预 测。

1 Verhulst 模型简介

Verhulst 模型的基本原理和计算方法简介图下

灰色系统理论及其应用 (七) :道路交通事故灰色 Verhulst 预测模型_第1张图片

参数列的最小二乘估计

灰色系统理论及其应用 (七) :道路交通事故灰色 Verhulst 预测模型_第2张图片

 定理 2       设灰色 Verhulst 模型如上所述,则白化方程的解(时间响应函数)为

灰色 Verhulst 模型的时间响应序列为

灰色系统理论及其应用 (七) :道路交通事故灰色 Verhulst 预测模型_第3张图片

累减还原式为

2 道路交通事故 Verhulst 预测模型

灰色系统理论及其应用 (七) :道路交通事故灰色 Verhulst 预测模型_第4张图片

1990~2003 年中国道路交通事故死亡人数曲线见图 2,可见曲线呈 S 形,故可建立 Verhulst 模型进行预测,其建模过程如下。

灰色系统理论及其应用 (七) :道路交通事故灰色 Verhulst 预测模型_第5张图片

灰色系统理论及其应用 (七) :道路交通事故灰色 Verhulst 预测模型_第6张图片

灰色系统理论及其应用 (七) :道路交通事故灰色 Verhulst 预测模型_第7张图片

(7)模型精度检验。

一个灰色模型要经过检验才能判定其是否合理。只有通过检 验的模型才能用来进行预测。检验方法有以下几种。

① 残差合格模型

灰色系统理论及其应用 (七) :道路交通事故灰色 Verhulst 预测模型_第8张图片

灰色系统理论及其应用 (七) :道路交通事故灰色 Verhulst 预测模型_第9张图片

② 关联度合格模型

 ③ 均方差比合格模型

灰色系统理论及其应用 (七) :道路交通事故灰色 Verhulst 预测模型_第10张图片

④ 小误差概率合格模型

灰色系统理论及其应用 (七) :道路交通事故灰色 Verhulst 预测模型_第11张图片

由上可知,给定一组取值,就确定了检验模型精度的一个等级。常用的精度等级见 表 15,可供检验模型参考。一般情况下,最常用的是相对误差检验指标。

灰色系统理论及其应用 (七) :道路交通事故灰色 Verhulst 预测模型_第12张图片

由以上检验方法,可得 1990~2003 年中国道路交通事故死亡人数 Verhulst 模型误 差检验值见表 16。

灰色系统理论及其应用 (七) :道路交通事故灰色 Verhulst 预测模型_第13张图片

灰色系统理论及其应用 (七) :道路交通事故灰色 Verhulst 预测模型_第14张图片

计算的 MATLAB 程序如下:

clc,clear
x1=[4.93 5.33 5.87 6.35 6.63 7.15 7.37 7.39 7.81 8.35
9.39 10.59 10.94 10.44];
n=length(x1);
nian=1990:2003;
plot(nian,x1,'o-');
x0=diff(x1);
x0=[x1(1),x0]
for i=2:n
    z1(i)=0.5*(x1(i)+x1(i-1));
end
z1
B=[-z1(2:end)',z1(2:end)'.^2]
Y=x0(2:end)'
abhat=B\Y %估计参数 a,b 的值
x=dsolve('Dx+a*x=b*x^2','x(0)=x0'); %求解常微分方程
x=subs(x,{'a','b','x0'},{abhat(1),abhat(2),x1(1)}); %代入参数值
yuce=subs(x,'t',0:14) %计算预测值
digits(6); x=vpa(x) %显示微分方程的解,为了提高计算精度,把该语句放在计算预测值之后,或者不使用该语句
yuce(16)=yuce(15);
x1_all=[x1,9.92,10.71];
epsilon=x1_all-yuce %计算残差
delta=abs(epsilon./x1_all) %计算相对误差
delta_mean=mean(delta) %计算平均相对误差
x1_all_0=x1_all-x1_all(1); %数据列的始点零化像
yuce_0=yuce-yuce(1); %数据列的始点零化像
s0=abs(sum(x1_all_0(1:end-1))+0.5*x1_all_0(end));
s1=abs(sum(yuce_0(1:end-1))+0.5*yuce_0(end));
tt=yuce_0-x1_all_0;
s1_s0=abs(sum(tt(1:end-1))+0.5*tt(end));
absdegree=(1+s0+s1)/(1+s0+s1+s1_s0) %计算灰色绝对关联度
c=std(epsilon,1)/std(x1_all,1) %计算标准差比值

3 预测结果比较

灰色系统理论及其应用 (七) :道路交通事故灰色 Verhulst 预测模型_第15张图片

比较表 16 和表 17 可知,Verhulst 模型预测精度与 GM(1,1)模型几乎没有差别。 计算的 MATLAB 程序如下:

clc,clear
x1=[4.93 5.33 5.87 6.35 6.63 7.15 7.37 7.39 7.81 8.35
9.39 10.59 10.94 10.44]; 
n=length(x1);
x0=diff(x1);
x0=[x1(1),x0]
for i=2:n
    z1(i)=0.5*(x1(i)+x1(i-1));
end
B=[-z1(2:end)',ones(n-1,1)];
Y=x0(2:end)';
abhat=B\Y %估计参数 a,b 的值
x=dsolve('Dx+a*x=b','x(0)=x0');
x=subs(x,{'a','b','x0'},{abhat(1),abhat(2),x1(1)});
yuce=subs(x,'t',0:14) %计算预测值
digits(6); x=vpa(x) %显示微分方程的解,为了提高计算精度,把该语句放在计算预测
值之后,或者不使用该语句
yuce(16)=yuce(15);
x1_all=[x1,9.92,10.71];
epsilon=x1_all-yuce %计算残差
delta=abs(epsilon./x1_all) %计算相对误差
delta_mean=mean(delta) %计算平均相对误差
x1_all_0=x1_all-x1_all(1); %数据列的始点零化像
yuce_0=yuce-yuce(1); %数据列的始点零化像
s0=abs(sum(x1_all_0(1:end-1))+0.5*x1_all_0(end));
s1=abs(sum(yuce_0(1:end-1))+0.5*yuce_0(end));
tt=yuce_0-x1_all_0;
s1_s0=abs(sum(tt(1:end-1))+0.5*tt(end));
absdegree=(1+s0+s1)/(1+s0+s1+s1_s0) %计算灰色绝对关联度
c=std(epsilon,1)/std(x1_all,1) %计算标准差比值

 4 结语

道路交通安全系统是一个灰色系统,可以应用灰色系统理论进行研究和分析,其中 灰色预测模型和方法简便易用,在交通事故预测中得到了较多应用。GM(1,1)模型适用 于具有较强指数规律的序列,只能描述单调的变化过程,而 Verhulst 模型则适用于非单 调的摆动发展序列或具有饱和状态的 S 形序列。


灰色系统理论及其应用系列博文:

灰色系统理论及其应用 (一) :灰色系统概论、关联分析、与传统统计方法的比较

灰色系统理论及其应用 (二) :优势分析

灰色系统理论及其应用 (三) :生成数

灰色系统理论及其应用 (四) :灰色模型 GM

灰色系统理论及其应用 (五) :灰色预测

灰色系统理论及其应用 (六) :SARS 疫情对某些经济指标影响问题

灰色系统理论及其应用 (七) :道路交通事故灰色 Verhulst 预测模型

灰色系统理论及其应用 (八) :GM(2,1)和 DGM 模型

灰色系统理论及其应用 (九) : GM(1, N) 和GM(0, N) 模型


 

你可能感兴趣的:(matlab数学建模)