图&网络系列博文:
【1】图与网络模型及方法:图与网络的基本概念
【2】图&网络模型应用—最短路径问题
【3】树:基本概念与最小生成树
【4】匹配问题: 匈牙利算法 、最优指派、相等子图
【5】Euler 图和 Hamilton 图
【6】计划评审方法和关键路线法【统筹方法】:广泛地用于系统分析和项 目管理
【7】最小费用流及其求法 :
【8】最大流问题
【9】钢管订购和运输问题
目录
1 基本概念
2 Euler 回路的 Fleury 算法
例 :邮递员问题 多邮递员问题
3 旅行商(TSP)问题
3.1 改良圈算法 3.2 旅行商问题的数学表达式
【定义】 经过G 的每条边的迹叫做G 的 Euler 迹;闭的 Euler 迹叫做 Euler 回路或 E 回路;含 Euler 回路的图叫做 Euler 图。 直观地讲,Euler 图就是从一顶点出发每边恰通过一次能回到出发点的那种图,即 不重复地行遍所有的边再回到出发点。
【定义 】包含G 的每个顶点的轨叫做 Hamilton(哈密顿)轨;闭的 Hamilton 轨叫做 Hamilton 圈或 H 圈;含 Hamilton 圈的图叫做 Hamilton 图。 直观地讲,Hamilton 图就是从一顶点出发每顶点恰通过一次能回到出发点的那种图,即不重复地行遍所有的顶点再回到出发点。
1921 年,Fleury 给出下面的求 Euler 回路的算法。
中国邮递员问题 一位邮递员从邮局选好邮件去投递,然后返回邮局,当然他必须经过他负责投递的 每条街道至少一次,为他设计一条投递路线,使得他行程最短。
上述中国邮递员问题的数学模型是:在一个赋权连通图上求一个含所有边的回路, 且使此回路的权最小。 显然,若此连通赋权图是 Euler 图,则可用 Fleury 算法求 Euler 回路,此回路即为 所求。
非 Euler 图的权最小的回路的求解方法
对于非 Euler 图,1973 年,Edmonds 和 Johnson 给出下面的解法:
邮局有 k(k ≥ 2) 位投递员,同时投递信件,全城街道都要投递,完成任务返回邮 局,如何分配投递路线,使得完成投递任务的时间最早?我们把这一问题记成 kPP。 kPP 的数学模型如下:
一名推销员准备前往若干城市推销产品,然后回到他的出发地。如何为他设计一条 最短的旅行路线(从驻地出发,经过每个城市恰好一次,最后返回驻地)?这个问题称 为旅行商问题。用图论的术语说,就是在一个赋权完全图中,找出一个有最小权的 Hamilton 圈。称这种圈为最优圈。与最短路问题及连线问题相反,目前还没有求解旅行 商问题的有效算法。所以希望有一个方法以获得相当好(但不一定最优)的解。
用改良圈算法得到的结果几乎可以肯定不是最优的。为了得到更高的精确度,可以 选择不同的初始圈,重复进行几次算法,以求得较精确的结果。 这个算法的优劣程度有时能用 Kruskal 算法加以说明。
假设C 是G 中的最优圈。 则对于任何顶点v ,C − v 是在G − v 中的 Hamilton 轨,因而也是G − v 的生成树。由 此推知:若 T 是 G − v 中的最优树,同时 e 和 f 是和 v 关联的两条边,并使得 w(e) + w( f ) 尽可能小,则 w(T ) + w(e) + w( f ) 将是 w(C) 的一个上界。 这里介绍的方法已被进一步发展。圈的修改过程一次替换三条边比一次仅替换两条 边更为有效;然而,有点奇怪的是,进一步推广这一想法,就不对了。
例 15 从北京(Pe)乘飞机到东京(T)、纽约(N)、墨西哥城(M)、伦敦(L)、巴黎(Pa) 五城市做旅游,每城市恰去一次再回北京,应如何安排旅游线,使旅程最短?各城市之 间的航线距离如表 7。
解:编写程序如下:
function main
clc,clear
global a
a=zeros(6);
a(1,2)=56;a(1,3)=35;a(1,4)=21;a(1,5)=51;a(1,6)=60;
a(2,3)=21;a(2,4)=57;a(2,5)=78;a(2,6)=70;
a(3,4)=36;a(3,5)=68;a(3,6)=68; a(4,5)=51;a(4,6)=61;
a(5,6)=13; a=a+a'; L=size(a,1);
c1=[5 1:4 6];
[circle,long]=modifycircle(c1,L);
c2=[5 6 1:4];%改变初始圈,该算法的最后一个顶点不动
[circle2,long2]=modifycircle(c2,L);
if long20
flag=0;
for m=1:L-3
for n=m+2:L-1
if a(c1(m),c1(n))+a(c1(m+1),c1(n+1))<...
a(c1(m),c1(m+1))+a(c1(n),c1(n+1))
flag=1;
c1(m+1:n)=c1(n:-1:m+1);
end
end
end
end
long=a(c1(1),c1(L));
for i=1:L-1
long=long+a(c1(i),c1(i+1));
end
circle=c1;
将旅行商问题写成数学规划的具体形式还需要一定的技巧,下面的例子我们引用 LINGO 帮助中的一个程序。
例 16 已知 SV 地区各城镇之间距离见表 8,某公司计划在 SV 地区做广告宣传, 推销员从城市 1 出发,经过各个城镇,再回到城市 1。为节约开支,公司希望推销员走 过这 10 个城镇的总距离最少。
解 编写 LINGO 程序如下:
MODEL:
SETS:
CITY / 1.. 10/: U; ! U( I) = sequence no. of city;
LINK( CITY, CITY):
DIST, ! The distance matrix;
X; ! X( I, J) = 1 if we use link I, J;
ENDSETS
DATA: !Distance matrix, it need not be symmetric;
DIST =0 8 5 9 12 14 12 16 17 22
8 0 9 15 17 8 11 18 14 22
5 9 0 7 9 11 7 12 12 17
9 15 7 0 3 17 10 7 15 18
12 17 9 3 0 8 10 6 15 15
14 8 11 17 8 0 9 14 8 16
12 11 7 10 10 9 0 8 6 11
16 18 12 7 6 14 8 0 11 11
17 14 12 15 15 8 6 11 0 10
22 22 17 18 15 16 11 11 10 0;
ENDDATA
!The model:Ref. Desrochers & Laporte, OR Letters,
Feb. 91;
N = @SIZE( CITY);
MIN = @SUM( LINK: DIST * X);
@FOR( CITY( K):
! It must be entered;
@SUM( CITY( I)| I #NE# K: X( I, K)) = 1;
! It must be departed;
@SUM( CITY( J)| J #NE# K: X( K, J)) = 1;
! Weak form of the subtour breaking constraints;
! These are not very powerful for large problems;
@FOR( CITY( J)| J #GT# 1 #AND# J #NE# K:
U( J) >= U( K) + X ( K, J) -
( N - 2) * ( 1 - X( K, J)) +
( N - 3) * X( J, K)));
! Make the X's 0/1;
@FOR( LINK: @BIN( X));
! For the first and last stop we know...;
@FOR( CITY( K)| K #GT# 1:
U( K) <= N - 1 - ( N - 2) * X( 1, K);
U( K) >= 1 + ( N - 2) * X( K, 1));
END
图&网络系列博文:
【1】图与网络模型及方法:图与网络的基本概念
【2】图&网络模型应用—最短路径问题
【3】树:基本概念与最小生成树
【4】匹配问题: 匈牙利算法 、最优指派、相等子图
【5】Euler 图和 Hamilton 图
【6】计划评审方法和关键路线法【统筹方法】:广泛地用于系统分析和项 目管理
【7】最小费用流及其求法 :
【8】最大流问题
【9】钢管订购和运输问题