人群密度估计--Crowd Counting Via Scale-adaptive Convolutional Nerual Network

Crowd Counting Via Scale-adaptive Convolutional Nerual Network
https://arxiv.org/abs/1711.04433v2
Code: https://github.com/miao0913/SaCNN-CrowdCounting-Tencent_Youtu

为了解决人群密度估计中的 scale and perspective 问题,先前研究者提出使用 多尺度卷积网络来解决多尺度问题
Multiple columns have different receptive fields corresponding to pedestrians (heads) of different scales
这里我们提出一个 尺度自适应CNN网络,只使用 3 ∗ 3 滤波器,结合CNN网络不同网络层的特征
a scale-adaptive CNN (SaCNN) architecture with a backbone of fixed small receptive fields.
We use all 3 ∗ 3 filters in the network

输入输出图示
人群密度估计--Crowd Counting Via Scale-adaptive Convolutional Nerual Network_第1张图片

3 Scale-adaptive CNN
3.1. Ground truth density maps
每个人头我们使用一个 delta function 来表示,ground truth density map D(x) 由 delta function 和 一个 Gaussian kernel 卷积得到
人群密度估计--Crowd Counting Via Scale-adaptive Convolutional Nerual Network_第2张图片
N 表示图像中人头总数,
The sum of the density map is equivalent to the total number of pedestrians in a crowd

3.2. Network architecture
人群密度估计--Crowd Counting Via Scale-adaptive Convolutional Nerual Network_第3张图片

人群密度估计--Crowd Counting Via Scale-adaptive Convolutional Nerual Network_第4张图片

The final density map therefore has a spatial resolution of 1/8 times of the input image.

3.3. Network loss
Euclidean loss to measure the distance between the estimated density map and the ground truth
人群密度估计--Crowd Counting Via Scale-adaptive Convolutional Nerual Network_第5张图片

引入了一个新的损失函数,侧重于 解决图像中只有几个人的情况估计效果不好的问题
introduce another loss function regarding the head count
We notice that most representative approaches perform poorly on crowd scenes with few pedestrians.
原来的损失函数不能解决这个问题的原因:because the absolute pedestrian number is usually not very large in sparse crowds compared to that in dense crowds
人群密度估计--Crowd Counting Via Scale-adaptive Convolutional Nerual Network_第6张图片

4 Experiments
人群密度估计--Crowd Counting Via Scale-adaptive Convolutional Nerual Network_第7张图片

我们的新数据库:特点 人少
人群密度估计--Crowd Counting Via Scale-adaptive Convolutional Nerual Network_第8张图片

ShanghaiTech dataset
人群密度估计--Crowd Counting Via Scale-adaptive Convolutional Nerual Network_第9张图片

人群密度估计--Crowd Counting Via Scale-adaptive Convolutional Nerual Network_第10张图片

人群密度估计--Crowd Counting Via Scale-adaptive Convolutional Nerual Network_第11张图片

WorldExpo’10 dataset & UCF CC 50 dataset
人群密度估计--Crowd Counting Via Scale-adaptive Convolutional Nerual Network_第12张图片

SmartCity dataset
人群密度估计--Crowd Counting Via Scale-adaptive Convolutional Nerual Network_第13张图片

人群密度估计--Crowd Counting Via Scale-adaptive Convolutional Nerual Network_第14张图片

下面是和 YOLO9000 对比,各有所长

人群密度估计--Crowd Counting Via Scale-adaptive Convolutional Nerual Network_第15张图片

你可能感兴趣的:(人群分析,人群分析)