bzoj1941: [Sdoi2010]Hide and Seek

KD-tree!!!终于开始写KD-tree了。。(太弱了。。)

KD-tree支持建树、插入一个点均摊O(logn)(替罪羊树实现)、查询距某点k近点O(sqrt(n))。

本题只要建树后对每个点求最近点和最远点即可,O(n sqrt(n)+n logn)。(两个qry占了大部分行数。。)

#include
#include
#include
#define inf 1000000000
#define K 2
#define N 500005
using namespace std;
int Rt,n,AnsMx,AnsMn,D,Q,Ans;
struct KD_node{int d[K],Mx[K],Mn[K],ls,rs;}T[N];
int read()
{
	char c=getchar();int x=0;
	while(c<'0'||c>'9')c=getchar();
	while(c>='0'&&c<='9')x=x*10+c-'0',c=getchar();
	return x;
}
bool cmp(KD_node a,KD_node b){return a.d[D]x)x=y;}
void Min(int &x,int y){if(y>1;D=now;
	nth_element(T+l,T+mid,T+r+1,cmp);k=mid;
	for (int i=0;imid) build(T[k].rs,mid+1,r,now^1);
	update(k);
}
void askMx(int &Mx,int k)
{
	Mx=0;
	for (int i=0;iDr)
	{
		if (Dl>AnsMx) qryMx(T[k].ls,now^1);
		if (Dr>AnsMx) qryMx(T[k].rs,now^1);
	}
	else
	{
		if (Dr>AnsMx) qryMx(T[k].rs,now^1);
		if (Dl>AnsMx) qryMx(T[k].ls,now^1);
	}
}
int main()
{
	n=read();
	for (int i=1;i<=n;i++)
		T[i].d[0]=read(),T[i].d[1]=read();
	build(Rt,1,n,0);
	Ans=inf;
	for (int i=1;i<=n;i++)
		Q=i,AnsMx=-1,AnsMn=inf,qryMn(Rt,0),qryMx(Rt,0),Min(Ans,AnsMx-AnsMn);
	printf("%d\n",Ans);
}


你可能感兴趣的:(bzoj,KD-tree)