【NOIP2000】方格取数

【codevs 1043】
1043 方格取数 2000年NOIP全国联赛提高组
时间限制: 1 s
空间限制: 128000 KB
题目等级 : 钻石 Diamond
题解
题目描述 Description
设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。如下图所示(见样例):

某人从图的左上角的A 点出发,可以向下行走,也可以向右走,直到到达右下角的B点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。

此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
【NOIP2000】方格取数_第1张图片

输入描述 Input Description
输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。

输出描述 Output Description
只需输出一个整数,表示2条路径上取得的最大的和。

样例输入 Sample Input
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0

样例输出 Sample Output
67

数据范围及提示 Data Size & Hint
如描述

这题可以@传纸条

从A到B走两次 等同于两点同时从A到B 只要路径不重合即可

dp[i][j][x][y]表示第一个点坐标为(i,j)第二个点坐标为(x,y)时的取数之和

#include 
#include 
#include 
#include 
using namespace std;
const int MAXN = 55;
int n,a,b,c;
int map[MAXN][MAXN];
int dp[MAXN][MAXN][MAXN][MAXN];

void dpdpd()
{
    for(int i = 1; i <= n ; i ++)
        for(int j = 1; j <= n; j ++)
            for(int x = 1; x <= n; x ++)
                for(int y = 1; y <= n; y ++)
                {
                    if(i != x || j != y)//if不重合
                        dp[i][j][x][y] = max(max(dp[i - 1][j][x - 1][y],dp[i][j - 1][x][y - 1]),max(dp[i][j - 1][x - 1][y],dp[i - 1][j][x][y - 1])) + map[i][j] + map[x][y];
                    else
                        dp[i][j][x][y] = max(max(dp[i - 1][j][x - 1][y],dp[i][j - 1][x][y - 1]),max(dp[i][j - 1][x - 1][y],dp[i - 1][j][x][y - 1])) + map[i][j];
                }
}

int main()
{
    scanf("%d",&n);
    while(scanf("%d %d %d",&a,&b,&c))
    {
        if(a == 0 && b == 0 && c == 0)  
            break;
        map[a][b] = c;
    }
    dpdpd();        
    printf("%d\n",dp[n][n][n][n]);
    return 0;
}

你可能感兴趣的:(===动态规划===)