- 《模式识别与机器学习》第一章
CS_Zero
机器学习人工智能
C1符号含义x\boldxx:向量,曲线拟合问题中的x坐标数值序列。元素个数为N。t\boldtt:向量,曲线拟合问题中的y坐标(target)数值序列。w\boldww:向量,曲线拟合问题中的待估计的参数,即M阶多项式的各阶系数。β\betaβ:标量,协方差的倒数,表示样本的精度。α\alphaα:标量,同上,曲线拟合例子中的先验的精度。多项式曲线拟合E(w)=12∑n=1N{y(xn,w)−t
- 【课程作业_01】国科大2023模式识别与机器学习实践作业
lzl2040
我的笔记python机器学习数据集人工智能
国科大2023模式识别与机器学习实践作业作业内容从四类方法中选三类方法,从选定的每类方法中,各选一种具体的方法,从给定的数据集中选一个数据集(MNIST,CIFAR-10,电信用户流失数据集)对这三种方法进行测试比较。第一类方法::线性方法:线性SVM、LogisticRegression第二类方法:非线性方法:KernelSVM,决策树第三类方法:集成学习:Bagging,Boosting第四类
- 模式识别与机器学习—PCA分析
在下雨599
模式识别复习机器学习人工智能
主成分分析将高维空间线性投影到一个低维空间,希望在这个低维空间能够表征高维空间中的绝大部分信息,即信息损失最小。关键:找到投影方向补充知识:主成分分析(PCA)目标函数1:最小化重建误差主成分分析(PCA)目标函数2:最大投影后的方差
- 国科大模式识别与机器学习2015-2019、2021仅考题
智商欠费,不死也废
期末机器学习人工智能
2015(8)试描述线性判别函数的基本概念,并说明既然有线性判别函,为什么还需要非线性判别函数?假设有两种模式,每类包括6个4维不同的模式,且良好分布。如果他们是线性可分的。问权向量至少需要几个系数分量?假如要建立额尔茨的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变)(8分)简述偏差方差分解及其推导过程,并说明偏差、方差、噪声三部分的内在含义。(8分)试描述用EM算
- 模式识别与机器学习-半监督学习
Kilig*
机器学习机器学习学习人工智能
模式识别与机器学习-半监督学习半监督学习半监督学习的三个假设半监督学习算法自学习算法自学习的步骤:自学习的优缺点:优点:缺点:协同训练多视角学习生成模型半监督SVM谨以此博客作为复习期间的记录半监督学习半监督学习(Semi-SupervisedLearning)是机器学习的一种范式,它利用同时包含标记(有标签)和未标记(无标签)数据的数据集来进行模型训练。相比于监督学习和无监督学习,半监督学习尝试
- 模式识别与机器学习-概率图模型
Kilig*
机器学习机器学习人工智能
模式识别与机器学习-概率图模型概率图模型三大基本问题表示推断学习有向概率图模型例子三种经典的图HMMViterbi算法谨以此博客作为复习期间的记录概率图模型三大基本问题概率图模型通常涉及三个基本问题,即表示(Representation)、推断(Inference)和学习(Learning)。这三个问题是概率图模型中关键的核心概念。表示(Representation):表示问题涉及选择合适的图结构
- 模式识别与机器学习-集成学习
Kilig*
机器学习机器学习集成学习人工智能
集成学习集成学习思想过拟合与欠拟合判断方法K折交叉验证BootstrapBagging随机森林的特点和工作原理:BoostingAdaBoost工作原理:AdaBoost的特点和优点:AdaBoost的缺点:GradientBoosting工作原理:GradientBoosting的特点和优点:GradientBoosting的变种:Bagging和Boosting算法比较Bagging(Boot
- 模式识别与机器学习-无监督学习-降维
Kilig*
机器学习机器学习学习人工智能
模式识别与机器学习-无监督学习-降维为什么要降维维度选择手工移除特征过滤式选择包裹式选择嵌入式选择维度抽取(线性模型)MDSPCA目标1:最小重构误差目标2:最大投影方差SVD思考:为什么保留特征值大的?维度抽取(非线性模型)KPCA流形学习ISOMAP优点:缺点:LLET-SNE谨以此博客作为复习期间的记录为什么要降维消除冗余信息和噪声:原始数据集可能包含大量冗余特征或噪声,这些特征可能对模型训
- 模式识别与机器学习-SVM(带软间隔的支持向量机)
Kilig*
机器学习支持向量机机器学习算法
SVM(带软间隔的支持向量机)软间隔思想的由来软间隔的引入谨以此博客作为复习期间的记录。软间隔思想的由来在上一篇博客中,回顾了线性可分的支持向量机,但在实际情况中,很少有完全线性可分的情况,大部分线性可分的情况都是整体线性可分,个别样本点无法线性分割开。因此就要避免这极个别样本点对分割平面产生的影响。线性可分支持向量机软间隔的引入在分类过程中,允许极个别数据点“越界”,如何在目标函数中体现这一点呢
- 模式识别与机器学习-无监督学习-聚类
Kilig*
机器学习机器学习学习聚类
无监督学习-聚类监督学习&无监督学习K-meansK-means聚类的优点:K-means的局限性:解决方案:高斯混合模型(GaussianMixtureModels,GMM)多维高斯分布的概率密度函数:高斯混合模型(GaussianMixtureModel,GMM)模型形式:EM算法迭代过程:K-means与高斯混合模型(GMM)的对比:K-means:高斯混合模型(GMM):高斯混合模型(GM
- 模式识别与机器学习-SVM(线性支持向量机)
Kilig*
机器学习支持向量机机器学习算法
线性支持向量机线性支持向量机间隔距离学习的对偶算法算法:线性可分支持向量机学习算法线性可分支持向量机例子谨以此博客作为复习期间的记录线性支持向量机在以上四条线中,都可以作为分割平面,误差率也都为0。但是那个分割平面效果更好呢?其实可以看出,黑色的线具有更好的性质,因为如果将黑色的线作为分割平面,将会有更大的间隔距离。其中,分割平面可以用以下式子表示:wx+b=0wx+b=0wx+b=0w和bw\t
- 模式识别与机器学习-SVM(核方法)
Kilig*
机器学习机器学习支持向量机人工智能
SVM(核方法)核方法核技巧在SVM中的应用谨以此博客作为复习期间的记录核方法对解线性分类问题,线性分类支持向量机是一种非常有效的方法.但是,有时分类问题是非线性的,这时可以使用非线性支持向量机,核心思想是通过核方法将低维非线性可分数据转化为高维线性可分数据。非线性问题往往不好求解,所以希望能用解线性分类问题的方法解决这个问题.所采取的方法是进行一个非线性变换,将非线性问题变换为线性问题,通过解变
- 模式识别与机器学习第一章
露(^_^)
模式识别与机器学习python
一、模式的概念广义:存在于时间和空间中可观察的物体。如果可以区别它们是否相同或是否相似,都可以称之为模式。狭义:模式所指的不是事物本身,而是从事物获得的信息,模式往往表现为具有时间和空间分布的信息。模式的直观特性:可观察性、可区分性、相似性。二、模式识别的概念模式识别:直观,无所不在,“人以类聚,物以群分”。目的:利用计算机对物理对象进行分类,在错误概率最小的条件下,使识别的结果尽量与客观物体相符
- 模式识别与机器学习(十二):Stacking
从零开始的奋豆
模式识别与机器学习机器学习人工智能
原理在本次实验中以决策树、svm和随机森林为基学习器,以决策树为元学习器。Stacking的做法是首先构建多个不同类型的一级学习器,并使用他们来得到一级预测结果,然后基于这些一级预测结果,构建一个二级学习器,来得到最终的预测结果。Stacking的动机可以描述为:如果某个一级学习器错误地学习了特征空间的某个区域,那么二级学习器通过结合其他一级学习器的学习行为,可以适当纠正这种错误。具体步骤如下图所
- 模式识别与机器学习(十二):随机森林
从零开始的奋豆
模式识别与机器学习机器学习随机森林人工智能
原理随机森林(RandomForest,RF)是Bagging的一个扩展变体。RF在以决策树为基学习器构建Bagging集成的基础上,在决策树的训练过程中引入随机属性选择。训练每颗决策树时随机选出部分特征作为输入,所以该算法被称为随机森林算法。在RF中,对基决策树的每个结点,先从该结点的属性集合中随机选择一个包含k个属性的子集(假定有d个属性),然后再从这个子集中选择一个最优属性用于划分。参数k控
- 模式识别与机器学习-特征选择和提取
Kilig*
机器学习机器学习人工智能
模式识别与机器学习-特征选择和提取特征选择一些距离测度公式独立特征的选择准则一般特征的散布矩阵准则离散K-L变换谨以此博客作为复习期间的记录。常见分类问题的流程,数据预处理和特征选择提取时机器学习环节中最重要的两个流程。这两个环节直接决定了最终性能的上下限,本部分记录一下特征提取和选择部分(特征工程)特征选择可以表示为:从一个包含n个度量值的集合{x1,x2,…,xn}\{x_1,x_2,\dot
- 模式识别与机器学习第三章
露(^_^)
模式识别与机器学习python
一、线性判别函数1.两类问题的判别函数若这些属于ω1和ω2两类的模式可用一个直线方程d(x)=0来划分,d(x)=w1x1+w2x2+w3=0d(x)称为两类模式的判别函数;d(x)=0称为决策面/判别界面方程。用判别函数进行模式分类依赖的两个因素:(1)判别函数的几何性质:线性的和非线性的函数。(2)判别函数的系数:判别函数的形式确定后,主要就是确定判别函数的系数问题。2.n维线性判别函数的一般
- 【模式识别与机器学习】——2.2正态分布模式的贝叶斯分类器
weixin_30421809
人工智能
出发点:当已知或者有理由设想类概率密度函数P(x|ωi)是多变量的正态分布时,上一节介绍的贝叶斯分类器可以导出一些简单的判别函数。由于正态密度函数易于分析,且对许多重要的实际应用又是一种合适的模型,因此受到很大的重视。(贝叶斯分类规则是基于统计概念的。如果只有少数模式样本,一般较难获得最优的结果)正态分布模式的贝叶斯判别函数具有M种模式类别的多变量正态类密度函数为:其中,每一类模式的分布密度都完全
- 模式识别与机器学习-判别式分类器
Kilig*
机器学习人工智能
模式识别与机器学习-判别式分类器生成式模型和判别式模型的区别线性判别函数多分类情况多分类情况1多分类情况2多分类情况3例题广义线性判别函数实例分段线性判别函数Fisher线性判别感知机算法例:感知机多类别分类谨以此博客作为学习期间的记录生成式模型和判别式模型的区别生成式模型关注如何生成整个数据的分布,而判别式模型则专注于学习如何根据给定输入预测输出标签或数值。在实践中多数判别式模型要优于生成式模型
- 模式识别与机器学习(十一):Bagging
从零开始的奋豆
模式识别与机器学习机器学习
1.原理Bagging[Breiman,1996a]是井行式集成学习方法最著名的代表.从名字即可看出,它直接基于自助采样法(bootstrapsampling)。给定包含m个样本的数据集,我们先随机取出一个样本放入采样集中,再把该样本放回初始数据集,使得下次采样时该样本仍有可能被选中,这样,经过m次随机采样操作,我们得到含m个样本的采样集,初始训练集中有的样本在采样集里多次出现,有的则从未出现,初
- 模式识别与机器学习(十):梯度提升树
从零开始的奋豆
模式识别与机器学习机器学习人工智能
1.原理提升方法实际采用加法模型(即基函数的线性组合)与前向分步算法。以决策树为基函数的提升方法称为提升树(boostingtree)。对分类问题决策树是二叉分类树,对回归问题决策树是二叉回归树。提升树模型可以表示为决策树的加法模型:fM(x)=∑m=1MT(x;θm)f_M(x)=\sum_{m=1}^MT(x;\theta_m)fM(x)=m=1∑MT(x;θm)其中,T(x;θm)T(x;\
- 模式识别与机器学习(九):Adaboost
从零开始的奋豆
模式识别与机器学习机器学习人工智能
1.原理AdaBoost是AdaptiveBoosting(自适应增强)的缩写,它的自适应在于:被前一个基本分类器误分类的样本的权值会增大,而正确分类的样本的权值会减小,并再次用来训练下一个基本分类器。同时,在每一轮迭代中,加入一个新的弱分类器,直到达到某个预定的足够小的错误率或预先指定的最大迭代次数再确定最后的强分类器。1.算法步骤首先,是初始化训练数据的权值分布D1。假设有N个训练样本数据,则
- 模式识别与机器学习(八):决策树
从零开始的奋豆
模式识别与机器学习机器学习决策树人工智能
1.原理决策树(DecisionTree),它是一种以树形数据结构来展示决策规则和分类结果的模型,作为一种归纳学习算法,其重点是将看似无序、杂乱的已知数据,通过某种技术手段将它们转化成可以预测未知数据的树状模型,每一条从根结点(对最终分类结果贡献最大的属性)到叶子结点(最终分类结果)的路径都代表一条决策的规则。一般,一棵决策树包含一个根节点,若干个内部结点和若干个叶结点。叶结点对应于决策结果,其他
- 模式识别与机器学习(七):集成学习
从零开始的奋豆
模式识别与机器学习机器学习集成学习人工智能
集成学习1.概念1.1类型1.2集成策略1.3优势2.代码实例2.1boosting2.2bagging2.3集成1.概念集成学习是一种机器学习方法,旨在通过组合多个个体学习器的预测结果来提高整体的预测性能。它通过将多个弱学习器(个体学习器)组合成一个强学习器,以获得更准确、更稳定的预测结果。在集成学习中,个体学习器可以是同质的(使用相同的学习算法,但在不同的训练集上训练)或异质的(使用不同的学习
- 图像形状及数量识别(matlab实现)
一寸光阴不可轻
matlab计算机视觉图像处理
米粒形状识别文章目录米粒形状识别概述一、图像处理1.图像去噪2.图像锐化3.边缘提取4.特征匹配二、matlab实现三、总程序代码结语概述基于视觉的沙粒形状识别系统模型需要借助计算机对特征的信息处理和分析,实现像人一样的智能识别,所以通常模式识别与机器学习存在着一定的联系。机器识别技术的实现主要分为以下几个步骤:(1)获取图像数据。(2)数据预处理。(3)图像特征提取。(4)设置分类器完成分类。基
- 模式识别与机器学习(六):数据降维
从零开始的奋豆
模式识别与机器学习matlab算法机器学习
1.数据降维数据降维有很多种,这里我们列出几个较为简单的2.PCAPCA是一种基于从高维空间映射到低维空间的映射方法,也是最基础的无监督降维算法,其目标是向数据变化最大的方向投影,或者说向重构误差最小化的方向投影。它由KarlPearson在1901年提出,属于线性降维方法。与PCA相关的原理通常被称为最大方差理论或最小误差理论。这两者目标一致,但过程侧重点则不同。求中心化后样本矩阵的协方差。求协
- 模式识别与机器学习(二):贝叶斯分类matlab实现
从零开始的奋豆
模式识别与机器学习分类人工智能数据挖掘
一.最小错误率step1:估计分类样本的各个属性的概率分布step2:估计先验概率step3:估计属于该类别的概率并取最大值这里以正态分布为例clc;clear;%风险表f=ones(4,4);%读数据X=xlsread('数据.xls');x=X(1:15,2:end);x_test=X(16:end,2:4);x1=x(find(x(:,4)==1),1:3);[n1,~]=size(x1);
- 推荐几本机器学习的书籍
古斯塔夫歼星炮
机器学习人工智能深度学习python开发语言
推荐几本机器学习的书籍:《机器学习》(TomM.Mitchell)、《统计学习方法》(李航)、《深度学习》(IanGoodfellow、YoshuaBengio和AaronCourville)、《模式识别与机器学习》(ChristopherM.Bishop)。
- 模式识别与机器学习(一)——引言
谢欣燕
笔记机器学习模式识别
1.1基本概念模式识别:从数据中识别或发现规律,并加以有效使用。为了进行模式识别,往往要借助计算设备进行编程实现和决策执行,这种设备即机器。机器学习:从计算设备的角度出发,是指机器从不具备某方面能力到具备次能力的学习过程,即发现数据中的规律并加以使用的能力。1.1.1投票选举近邻法集成学习主动学习1.2典型的机器学习系统1.2.1医学图像诊断病理图像:高倍显微镜下看到的将人体组织做成病理切片后的图
- 模式识别与机器学习·第二章——统计判别
谷雨·清明
UCAS模式识别与机器学习模式识别机器学习贝叶斯
模式识别与机器学习·第二章——统计判别统计判别的意义贝叶斯判别贝叶斯最小风险判别两类(M=2)情况的贝叶斯最小风险判别多类(M类)情况的贝叶斯最小风险判别正态分布模式的贝叶斯分类器统计判别的意义模式识别的目的就是要确定某一个给定的模式样本属于哪一类。可以通过对被识别对象的多次观察和测量,构成特征向量,并将其作为某一个判决规则的输入,按此规则来对样本进行分类。在获取模式的观测值时,有些事物具有确定的
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号