- 算法:动态规划 洛谷 P8776 [蓝桥杯 2022 省 A] 最长不下降子序列
健仙
算法动态规划蓝桥杯
思路:首先,这题你得先会(nlogn)复杂度的求最长不下降子序列方法。我们可以直接让k个数从下标为1开始,滑动到末端,这k个数就不用看它,因为我们把他设置成k个数后面的数,所以答案先加上k,然后我们看预处理每一个数从他开始(包括这个数)后面的最长不下降子序列,把长度放入b数组中,这样我们答案就是k加上b【k+1】,然后我们看k前面的数,k前面的数不是让答案加上前面的最长不下降子序列,因为此时我们有
- 算法竞赛备赛——【图论】求最短路径——Floyd算法
Aurora_wmroy
算法竞赛备赛算法图论c++蓝桥杯数据结构
floyd算法基于动态规划应用:求多源最短路时间复杂度:n^3dijkstra:不能解决负边权floyd:能解决负边权不能解决负边权回路问题求最短路径:dijkstrabfsfloyd思路1.让任意两点之间的距离变短:引入中转点k通过k来中转i---->k---->jj2.找状态:n个点都可以做中转点的情况下,i到j之间的最短路径的长度是x最终状态:dp[n][i][j]=x;中间状态:dp[k]
- 爬楼梯——动态规划
不吃鱼的猫
算法动态规划算法leetcode
文章目录题目一解法一:动态规划题目二解法:题目一假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?解法一:动态规划将dp[i]数组定义为到达第i阶楼梯有多少种方法,由每次可以爬1或2阶可以得到递推公式:dp[i]=dp[i−1]+dp[i−2]dp[i]=dp[i-1]+dp[i-2]dp[i]=dp[i−1]+dp[i−2]其中,dp[i-1
- 动态规划之爬楼梯
LeetCode地址:爬楼梯假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?注意:给定n是一个正整数。示例1:输入:2输出:2解释:有两种方法可以爬到楼顶。1.1阶+1阶2.2阶示例2:输入:3输出:3解释:有三种方法可以爬到楼顶。-1阶+1阶+1阶-1阶+2阶-2阶+1阶第一种方法动态规划1.确定dp数组dp[i]爬到第i层楼梯,有dp[i
- 力扣第70题:爬楼梯 动态规划DP入门(C++)
Daking-
leetCode耐刷王leetcode动态规划算法c++
假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?示例1:输入:n=2输出:2解释:有两种方法可以爬到楼顶。1.1阶+1阶2.2阶示例2:输入:n=3输出:3解释:有三种方法可以爬到楼顶。1.1阶+1阶+1阶2.1阶+2阶3.2阶+1阶思路什么叫动态规划?我们分割原始问题为多个子问题,在遍历数据的过程中,如果能根据之前得到的信息动态解决当前的子
- Java数据结构与算法(爬楼梯动态规划)
盘门
java数据结构与算法实战java动态规划开发语言
前言爬楼梯就是一个斐波那契数列问题,采用动态规划是最合适不过的。实现原理初始化:dp[0]=1;dp[1]=2;转移方程:dp[i]=dp[i-1]+d[i-2];边界条件:无具体代码实现classSolution{publicintclimbStairs(intn){if(n==1){return1;}int[]dp=newint[n];dp[0]=1;dp[1]=2;for(inti=2;i<
- 爬楼梯(动态规划)
AWEN_33
算法
假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?示例1:输入:n=2输出:2解释:有两种方法可以爬到楼顶。1.1阶+1阶2.2阶示例2:输入:n=3输出:3解释:有三种方法可以爬到楼顶。1.1阶+1阶+1阶2.1阶+2阶3.2阶+1阶c初解(动态规划):classSolution{public:intclimbStairs(intn){//处
- 经典动态规划
最长上升子序列](https://www.luogu.com.cn/problem/B3637)题目描述这是一个简单的动规板子题。给出一个由n(n≤5000)n(n≤5000)n(n≤5000)个不超过10610^6106的正整数组成的序列。请输出这个序列的最长上升子序列的长度。最长上升子序列是指,从原序列中按顺序取出一些数字排在一起,这些数字是逐渐增大的。输入格式第一行,一个整数n,表示序列长度
- 【动态规划】 线性DP1——经典回顾
【动态规划】系列文章线性DP1.【动态规划】线性DP1——经典回顾2.【动态规划】线性DP2——进阶1【动态规划】线性DP1——经典回顾【动态规划】新的开始经典DP回顾最长递增子序列(LIS)题目链接题目分析DP代码O(n2)O(n^2)O(n2)补充算法O(nlogn)O(nlogn)O(nlogn)最长公共子序列(LCS)题目链接题目分析代码数字三角形题目链接题目分析自上而下代码自下而上代码新
- 区间DP 石子合并 C++
小超超爱学习9937
c++开发语言算法数据结构学习
区间DP是一种动态规划的方法,用于解决涉及区间的问题。它通常应用于需要确定区间的最优解或最值的情况下。石子合并问题是一个经典的区间DP问题,可以用区间DP方法解决。给定一行n个石子,每个石子有一个价值,现要将石子合并成若干堆,每次只能选择相邻的两堆进行合并,合并的得分为两堆石子的总价值,合并后的新堆的价值为得分。求合并到最后,最终得到的堆的最大价值。要求解石子合并问题,可以定义一个dp数组,dp[
- 五大编程竞赛平台终极对比
2401_86601498
c++
LeetCodeLeetCode是一个流行的在线编程平台,提供大量算法和数据结构题目。题目分为简单、中等和困难三个难度级别。LeetCode的题目涵盖各种主题,包括数组、字符串、树、动态规划等。LeetCode支持多种编程语言,包括C++,并提供在线代码编辑器和即时反馈。LeetCode还提供竞赛和面试模拟功能,适合准备技术面试的用户。CodeforcesCodeforces是一个以竞赛为主的在线
- 代码随想录算法训练营总结篇
m0_74934708
算法
第一次接触卡哥的课程是在大二上,当时做N皇后的题目看到卡哥的视频觉得大受裨益,就想着有时间能够刷完卡哥录制的整期课程,后面有算法训练营的监督让我很幸运地坚持了六十天,学到了很多东西,像贪心算法、动态规划、单调栈以及在二叉树里使用BFS和DFS,都是一些很美妙的思路。这次一刷leetcode后面要去学学前端了,等到暑假有时间希望可以跟着卡哥二刷leetcode。学会算法后再去做题有些痛苦,但做出来的
- Leetcode3202. 找出有效子序列的最大长度 II
EverydayaLeetcode题目来源:3202.找出有效子序列的最大长度II解法1:动态规划本题是选与不选的子序列问题,可以尝试给出这样的状态定义:dp[i][j]:以nums[i]结尾模k后值为j的最长子序列的长度。那么状态转移方程是怎样的呢?对于每一个i,遍历j(0&nums,intk){intn=nums.size();//dp[i][j]:以nums[i]结尾模k后值为j的最长子序列
- 【华为机试】HJ61 放苹果
不爱熬夜的Coder
算法华为机试golang华为golang算法面试
文章目录HJ61放苹果描述输入描述输出描述示例1示例2解题思路算法分析问题本质分析状态定义与转移递推关系详解动态规划表构建算法流程图示例推导过程代码实现思路时间复杂度分析关键优化点边界情况处理递归解法对比实际应用场景测试用例分析算法特点数学原理完整题解代码HJ61放苹果描述我们需要将m个相同的苹果放入n个相同的盘子中,允许有的盘子空着不放。求解有多少种不同的分法。输入描述输入两个整数m,n(0B[
- 2025B卷 - 华为OD机试七日集训第2期 - 按算法分类,由易到难,循序渐进,玩转OD(Python/JS/C/C++)
目录推荐刷题方法:一、适合人群二、本期训练时间三、如何参加四、七日集训第2期五、精心挑选21道高频100分经典题目,作为入门。第1天、逻辑分析第2天、数组第3天、双指针第4天、贪心算法第5天、字符串处理第6天、深度优先搜索DFS第7天、动态规划六、集训总结国内直接使用ChatGPT4o、o3、o4-mini-high、GPT-4.5、GPT4.1、Gemini2.5pro0605、ClaudeSo
- 华为OD机试专栏--1.3 算法基础:1.3.3 动态规划入门
xiaoheshang_123
华为OD机试真题题库解析华为od面试职场和发展算法
目录1.3算法基础1.3.3动态规划入门一、动态规划的核心思想1.1什么是动态规划?1.2动态规划的特点二、动态规划的基本步骤三、经典动态规划问题3.1斐波那契数列(FibonacciSequence)问题描述动态规划解法代码实现(Python)3.2背包问题(KnapsackProblem)问题描述动态规划解法代码实现(Python)3.3最长公共子序列(LongestCommonSubsequ
- 前端面试专栏-算法篇:20. 贪心算法与动态规划入门
欢迎来到前端面试通关指南专栏!从js精讲到框架到实战,渐进系统化学习,坚持解锁新技能,祝你轻松拿下心仪offer。前端面试通关指南专栏主页前端面试专栏规划详情贪心算法与动态规划入门在计算机科学领域,算法是解决问题的核心工具。而贪心算法与动态规划作为两种重要的算法设计策略,广泛应用于优化问题中。本文将深入浅出地介绍这两种算法的基本概念、适用场景、实现方法,并通过经典案例帮助读者理解和掌握它们的核心思
- LeetCode题解---<接雨水>
文章目录题目法一:动态规划关于动态规划完整代码简单易理解版:官方代码:题目给定n个非负整数表示每个宽度为1的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。输入:height=[0,1,0,2,1,0,1,3,2,1,2,1]输出:6解释:上面是由数组[0,1,0,2,1,0,1,3,2,1,2,1]表示的高度图,在这种情况下,可以接6个单位的雨水(蓝色部分表示雨水)。示例2:输入:hei
- 算法设计与分析:分治、动态规划与贪心算法的异同与选择
vortex5
算法动态规划贪心算法
在计算机科学中,算法是解决问题的核心。面对复杂问题,算法设计师常常需要将其分解为更小、更易管理的子问题。分治法、动态规划和贪心算法都是基于“原问题”和“子问题”概念的强大策略,但它们在处理子问题的方式、相互关系以及最终解决方案的保证上存在本质区别。理解这些差异对于选择最适合特定问题的算法至关重要。✅一、共同点:都涉及“原问题→子问题”这三种算法范式都遵循将复杂问题分解为更简单部分的思想,这是许多高
- 集训DAY7之线性dp与前缀优化/stl优化
心之所向凉月空
c++开发语言数据结构算法
集训DAY7之线性DP与前缀优化/STL优化目录DP的概念与思想核心DP的题目类型线性DP详解DP的优化策略后记DP的概念与思想核心DP的定义DP也就是动态规划(DynamicProgramming)是求解决策过程最优化的过程动态规划主要用于求解以时间划分阶段的动态过程的优化问题DP的基本思想动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中我们常常需要在多个可行解中寻找最优解,其基本思
- 华为OD机试 - 取零食 - 动态规划(Python/JS/C/C++ 2024 E卷 100分)
哪 吒
华为od动态规划python
2025华为OD机试题库(按算法分类):2025华为OD统一考试题库清单(持续收录中)以及考点说明(Python/JS/C/C++)。专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随
- 深入DP!!!!!!!!!!!!!!-----------------------“DP就像人生:你的当前状态由过去的选择决定,而你的选择将影响未来状态。定义好你的状态转移方程,找到最优的人生路径!“
zwenqiyu
算法
"动态规划不是魔法,而是将大问题拆解成小问题的艺术"——一位ACMer的深夜顿悟暑假集训我们过关斩将,来到了线性动态规划和前缀优化这里,不好,是让人心惊胆战的DP!!!不同于其他题解,我们在详说DP之前,我们先说说记忆化搜索。什么是记忆化搜索?记忆化搜索(Memoization)是一种优化递归算法的技术,通过存储已计算的子问题结果,避免重复计算。它是自顶向下的动态规划实现方式。模板题斐波那契数列问
- 三种方法详解最长回文子串问题
文章目录题目描述方法一:动态规划状态转移方程:状态转移公式:代码实现:使用滚动数组优化空间方法二:中心扩展法核心思想算法步骤代码实现复杂度分析方法三:马拉车算法算法思路代码实现复杂度分析三种方法对比回文子串是字符串处理中的经典问题,本文将通过动态规划、中心扩展和马拉车算法三种方法,详细解析如何高效求解最长回文子串,并对比各方法的优劣。题目描述方法一:动态规划我们定义一个二维布尔数组dp,其中:dp
- 力扣第 70 题:爬楼梯问题(Climbing Stairs)
力扣第70题:爬楼梯问题(ClimbingStairs)一、题目描述假设你正在爬楼梯,需要爬到第nnn级台阶。每次可以爬111或222级台阶。有多少种不同的方法可以爬到楼顶?输入:一个正整数nnn。输出:一个整数,表示不同的方法数。二、解题思路这个问题可以用递归+记忆化的方式解决,本质是一个动态规划问题。1.状态定义定义dp[i]dp[i]dp[i]表示爬到第iii级台阶的方法数。2.状态转移方程
- 力扣第70题 爬楼梯 c++ 动态规划 基础题
题目70.爬楼梯简单相关标签记忆化搜索数学动态规划假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?示例1:输入:n=2输出:2解释:有两种方法可以爬到楼顶。1.1阶+1阶2.2阶示例2:输入:n=3输出:3解释:有三种方法可以爬到楼顶。1.1阶+1阶+1阶2.1阶+2阶3.2阶+1阶提示:1dp(n+1);//如果n小于等于2,则直接返回ni
- 算法45:动态规划专练(力扣70: 爬楼梯 力扣746:使用最小花费爬楼梯)
适合java程序员的算法
算法算法动态规划leetcode
力扣70题:爬楼梯假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?示例1:输入:n=2输出:2解释:有两种方法可以爬到楼顶。1.1阶+1阶2.2阶示例2:输入:n=3输出:3解释:有三种方法可以爬到楼顶。1.1阶+1阶+1阶2.1阶+2阶3.2阶+1阶分析:1.如果有1个楼梯,那只能走1步登顶。1中方法2.如果有2个楼梯。a.我们可以一次走一
- 【一起来学AI大模型】算法核心:数组/哈希表/树/排序/动态规划(LeetCode精练)
运器123
AI大模型python开发语言人工智能AIAI编程算法散列表
以下是五大核心算法的重点解析和LeetCode经典题解,包含最优解法和模板代码:一、数组操作(双指针/滑动窗口)核心思想:通过索引指针高效遍历与操作数组1.移动零(No.283)defmoveZeroes(nums):slow=0forfastinrange(len(nums)):ifnums[fast]!=0:nums[slow],nums[fast]=nums[fast],nums[slow]
- 区间动态规划
Luther coder
动态规划算法
目录一.区间dp简介二.模板代码三.典型例题(1)P4170[CQOI2007]涂色-洛谷三.总结一.区间dp简介区间dp:就是对于区间的一种动态规划,它将问题划分为若干个子区间,并通过定义状态和状态转移方程来求解每个子区间的最优解,最终得到整个区间的最优解。对于某个区间,它的合并方式可能有很多种,我们需要去枚举所有的方式,通常是去枚举区间的分割点,找到最优的方式(一般是找最少消耗)。例如:对于区
- 贪心算法 greedy algorithm
yuebo_zhao
算法c++数据结构
贪心算法greedyalgorithm」是一种常见的解决优化问题的算法,其基本思想是在问题的每个决策阶段,都选择当前看起来最优的选择,即贪心地做出局部最优的决策,以期获得全局最优解。贪心算法简洁且高效,在许多实际问题中有着广泛的应用。贪心算法和动态规划都常用于解决优化问题。它们之间存在一些相似之处,比如都依赖最优子结构性质,但工作原理不同。动态规划会根据之前阶段的所有决策来考虑当前决策,并使用过去
- 【归纳】C++入门算法模版总结(超级详细!!!)(包括高精度,排序,枚举,二分,搜索,动态规划等)
0.前言本文针对有一定算法基础的选手制作,收录了大部分算法的模板,详细解说可以点进去我提供的链接了解。或者进入我的主页给一点支持!本人也是一名新手,如果这篇文章有不严谨的地方或者不懂的地方可以在评论区留言,我会为你们一一解答的。【归纳】C++入门算法模版总结(包括高精度,排序,枚举,二分,搜索,动态规划等)(超级详细!!!)0.前言1.高精度1.1.单独实现1.1.1.高精度加法1.1.2.高精度
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理