Codeforces Round #483 (Div. 2) D. XOR-pyramid

D. XOR-pyramid
time limit per test
2 seconds
memory limit per test
512 megabytes
input
standard input
output
standard output

For an array bb of length mm we define the function ff as

f(b)={b[1]if m=1f(b[1]b[2],b[2]b[3],,b[m1]b[m])otherwise,f(b)={b[1]if m=1f(b[1]⊕b[2],b[2]⊕b[3],…,b[m−1]⊕b[m])otherwise,

where  is bitwise exclusive OR.

For example, f(1,2,4,8)=f(12,24,48)=f(3,6,12)=f(36,612)=f(5,10)=f(510)=f(15)=15f(1,2,4,8)=f(1⊕2,2⊕4,4⊕8)=f(3,6,12)=f(3⊕6,6⊕12)=f(5,10)=f(5⊕10)=f(15)=15

You are given an array aa and a few queries. Each query is represented as two integers ll and rr. The answer is the maximum value of ff on all continuous subsegments of the array al,al+1,,aral,al+1,…,ar.

Input

The first line contains a single integer nn (1n50001≤n≤5000) — the length of aa.

The second line contains nn integers a1,a2,,ana1,a2,…,an (0ai23010≤ai≤230−1) — the elements of the array.

The third line contains a single integer qq (1q1000001≤q≤100000) — the number of queries.

Each of the next qq lines contains a query represented as two integers llrr (1lrn1≤l≤r≤n).

Output

Print qq lines — the answers for the queries.

Examples
input
Copy
3
8 4 1
2
2 3
1 2
output
Copy
5
12
input
Copy
6
1 2 4 8 16 32
4
1 6
2 5
3 4
1 2
output
Copy
60
30
12
3
Note

In first sample in both queries the maximum value of the function is reached on the subsegment that is equal to the whole segment.

In second sample, optimal segment for first query are [3,6][3,6], for second query — [2,5][2,5], for third — [3,4][3,4], for fourth — [1,2][1,2].

给n个数,询问q次,每次询问给出l,r.   [l,r]区间求异或最大值为多少。

与其他语言不同,c语言和c++语言的异或不用X0R;而用‘^’,这在其他语言表示乘方。

此题需要记忆化两次。区间动态规划。

#include
#define MAX 5005 
#define  ll long long
using namespace std;
ll N,Q;
ll a[MAX],dp[MAX][MAX],ans[MAX][MAX];
int main()
{
std::ios::sync_with_stdio(0); 
cin.tie(0);
cout.tie(0); 
cin>>N;
for(ll i=1;i<=N;i++)
    {cin>>a[i]; dp[i][i]=a[i]; ans[i][i]=a[i];//类似杨辉三角初始化 
}
for(ll t=1;t    for(ll i=1;i+t<=N;i++)//枚举开始位置 i+t为结束位置
   {
      ll j=i+t;
      dp[i][j]=dp[i+1][j]^dp[i][j-1];
  ans[i][j]=max(dp[i][j],max(ans[i+1][j],ans[i][j-1]));//自己画个矩阵就明白了 

cin>>Q;
while(Q--)
{
ll l,r;
cin>>l>>r;
cout<
return 0;
}

你可能感兴趣的:(动态规划)