高等数学学习笔记——第二十二讲——导数的概念

 

1. 问题导入——微分学的产生背景(解决瞬时速度、加速度、曲线切线等相关问题)

高等数学学习笔记——第二十二讲——导数的概念_第1张图片

 

2. 微积分是微分学和积分学的总称,由牛顿和莱布尼兹在研究物理和几何问题的过程中,总结前人的经验,于十七世纪后期建立起来的

高等数学学习笔记——第二十二讲——导数的概念_第2张图片

 

3. 问题求解1——求变速直线运动的瞬时速度

高等数学学习笔记——第二十二讲——导数的概念_第3张图片

高等数学学习笔记——第二十二讲——导数的概念_第4张图片

 

4. 问题求解2——求曲线的切线(问题1与2的共性:函数增量与自变量增量之比的极限)

高等数学学习笔记——第二十二讲——导数的概念_第5张图片

高等数学学习笔记——第二十二讲——导数的概念_第6张图片

高等数学学习笔记——第二十二讲——导数的概念_第7张图片

高等数学学习笔记——第二十二讲——导数的概念_第8张图片

 

5. 导数的定义

高等数学学习笔记——第二十二讲——导数的概念_第9张图片

高等数学学习笔记——第二十二讲——导数的概念_第10张图片

 

7. 导数的几何意义

高等数学学习笔记——第二十二讲——导数的概念_第11张图片

 

8. 函数在某处可导的充要条件是它在该处的左、右导数存在且相等

高等数学学习笔记——第二十二讲——导数的概念_第12张图片

 

9. 可导必连续,连续不一定可导

高等数学学习笔记——第二十二讲——导数的概念_第13张图片

 

10. 可导在生活中的应用实例——儿童滑梯处处可导(曲线处处有明确的延伸方向)

高等数学学习笔记——第二十二讲——导数的概念_第14张图片

 

11. 导函数(导数)的定义

高等数学学习笔记——第二十二讲——导数的概念_第15张图片

 

12. 使用定义求导函数示例(常值函数、二次抛物线函数、反比例函数)

高等数学学习笔记——第二十二讲——导数的概念_第16张图片

你可能感兴趣的:(数学(高数,线代,概率论),Foundation)