- sqlplus表结构查询
胡斌附体
oracle数据库字符集建表语句查询格式输出
背景。需要知道目标表名。所属用户。目标库和源库同属一类数据库,oracle。使用的数据融合系统,在ogg加持下还需要手动在目标库创建表结构登录目标库sqlplus,使用sqlplus/assysdba查询建表语句执行以下语句进行查询--设置输出格式(在SQL*Plus中执行)SETLONG1000000--确保完整显示长文本SETPAGESIZE0--禁用分页SETLINESIZE200--调整行
- 智能防御原理和架构
hao_wujing
安全
大家读完觉得有帮助记得关注和点赞!智能防御系统通过**AI驱动的动态感知、主动决策与自治响应**构建自适应防护体系,其核心在于将被动规则匹配升级为**预测性威胁狩猎**,实现对新型攻击(如AI生成的0day漏洞利用)的有效遏制。以下从原理、架构到技术实现进行体系化拆解:---###⚙️核心防御原理####1.**多模态威胁感知**-**跨域数据融合**:-网络层:DPI深度包检测(如Zeek解析T
- AI人工智能与机器学习的大数据融合应用
AI智能探索者
人工智能机器学习大数据ai
AI人工智能与机器学习的大数据融合应用关键词:AI人工智能、机器学习、大数据、融合应用、数据挖掘摘要:本文深入探讨了AI人工智能与机器学习在大数据融合应用方面的相关内容。首先介绍了研究的背景、目的、预期读者和文档结构,对核心术语进行了清晰定义。接着阐述了AI、机器学习和大数据的核心概念及相互联系,给出了形象的文本示意图和Mermaid流程图。详细讲解了核心算法原理,并通过Python源代码进行说明
- Manus AI与多语言手写识别
tonngw
人工智能
技术文章大纲:ManusAI与多语言手写识别引言手写识别技术的发展背景与市场需求ManusAI的定位与核心技术优势多语言场景下的挑战与机遇ManusAI的核心技术架构基于深度学习的端到端手写识别模型多模态数据融合(笔迹压力、书写轨迹等)自适应语言模型与字符集扩展机制多语言手写识别的关键技术非拉丁语系(中文、阿拉伯语等)的笔迹特征提取小样本语言数据的迁移学习策略上下文感知与语法纠错在低资源语言中的应
- 水下目标检测:突破与创新
加油吧zkf
目标跟踪人工智能计算机视觉
水下目标检测技术背景水下环境带来独特挑战:光线衰减导致对比度降低,散射引发图像模糊,色偏使颜色失真。动态水流造成目标形变,小目标(如10×10像素海胆)检测困难。声呐与光学数据融合可提升精度,但多模态对齐仍是技术难点。核心算法实现要点图像预处理直方图均衡化与Retinex算法结合改善对比度和色偏:defsingle_scale_retinex(img,sigma):retinex=np.log10
- ROS 避障技术介绍
Xian-HHappy
机器人-Robotros避障
ROS避障技术介绍一、ROS避障系统概述ROS(机器人操作系统)作为移动机器人开发的主流框架,其避障技术依托模块化设计,通过传感器数据融合、环境建模与运动规划实现动态障碍物规避。在物流机器人、服务机器人、自动驾驶等场景中,ROS避障系统需满足实时性、安全性与灵活性要求,核心流程包括环境感知-障碍建模-路径规划-运动控制四个环节。二、避障核心组件与原理1.传感器层:环境信息获取激光雷达(如Velod
- Java打造同城道路救援利器:车辆救援,全程无忧保障
省钱兄科技
java开发语言
Java打造同城道路救援利器:车辆救援,全程无忧保障在城市化进程加速、车辆保有量激增的背景下,传统道路救援模式因响应慢、资源分散、信息孤岛等问题,已难以满足用户对“秒级响应”的期待。基于Java技术栈构建的同城道路救援系统,通过精准定位、智能调度、全流程数字化管理三大核心能力,重新定义了救援行业的技术标准,成为车辆救援领域的标杆解决方案。一、精准定位:误差<3米,救援“零偏差”1.多源数据融合定位
- MCP如何助力智能交通系统?从数据融合到精准决策
Echo_Wish
Python进阶python开发语言
MCP如何助力智能交通系统?从数据融合到精准决策近年来,智能交通系统(ITS)正在全球范围内快速发展,它结合人工智能(AI)、物联网(IoT)和数据分析,致力于提高交通效率、减少拥堵、增强安全性。而MCP(Multi-ConstraintPathfinding,多约束路径寻优)技术作为一种复杂路径优化算法,在智能交通系统中扮演着重要角色,尤其是在导航优化、公共交通调度、应急响应等场景。今天,我们就
- 基于大模型的短暂性脑缺血发作(TIA)全流程预测与诊疗辅助系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、系统核心目标二、系统架构模块三、实验验证证据链系统架构流程图关键技术创新点一、系统核心目标构建多模态数据融合的TIA预测-干预-管理闭环,覆盖术前预警、术中决策、术后康复全周期二、系统架构模块1.术前预测模块高危人群筛查模型输入:电子健康记录(EHR)、基因数据、可穿戴设备实时监测特征工程:血压波动模式、颈动脉斑块稳定性评分TIA发作概率预测72小时预警模型(LSTM+Transforme
- 解锁地图的更多可能:蜂鸟云数据融合功能正式上线!
蜂鸟视图fengmap
人工智能蜂鸟视图数据融合智能地图电子地图路径规划电子围栏
随着场景化业务的复杂程度日益增加,如何让地图数据更加智能化、动态化,是企业亟需解决的问题。蜂鸟视图蜂鸟云平台全新上线的数据融合功能,助力用户轻松实现地图与多来源数据的无缝结合,为企业打造真正“懂场景”的智能地图解决方案。一、蜂鸟云数据融合的核心亮点1.多源数据接入,轻松融合蜂鸟云支持多种数据来源的接入与管理,确保数据的实时性与灵活性:•静态文件数据:支持CSV、JSON等格式数据的上传与展示。•A
- 蜂鸟视图蜂鸟云平台更新概述:主题、制图、数据融合、云平台登录、服务接口及开发者中心
摘要蜂鸟云平台作为一个全面的地图与数据处理平台,提供了多个功能模块支持各种应用场景。本文详细介绍了蜂鸟云平台近期的更新,包括主题设计器、制图工具、数据融合模块、云平台登录优化、平台服务接口以及开发者中心的更新内容。通过对各项更新的分析,本文旨在展示这些改进如何提升系统的稳定性、性能以及用户体验,为开发者与用户提供更加便捷高效的解决方案。关键词蜂鸟云平台;主题设计器;制图工具;数据融合;用户体验;平
- Kaggle金牌方案复现:CGO-Transformer-GRU多模态融合预测实战
1背景分析在2023年Kaggle"GlobalMultimodalDemandForecastingChallenge"竞赛中,CGO-Transformer-GRU方案以领先第二名1.8个百分点的绝对优势夺冠,创下该赛事三年来的最佳成绩。本方案创新性地融合了协方差引导优化(CGO)、注意力机制和时序建模三大技术模块,解决了多模态数据融合中的关键挑战:模态对齐、特征冲突和时序依赖建模。(1)多模
- Python 爬虫实战:英雄联盟赛事数据爬取(Scrapy+Playwright + 多源数据融合)
Python核芯
Python爬虫实战项目python爬虫scrapy
引言在电竞数据分析领域,英雄联盟(LeagueofLegends)赛事数据具有极高的商业价值。本文将通过一个完整的实战案例,演示如何使用Scrapy框架结合Playwright库,实现多源赛事数据的爬取与融合。项目涵盖动态渲染页面处理、分布式爬虫架构、数据清洗整合等核心技术点,最终构建一个可扩展的电竞数据采集平台。一、技术选型分析1.1为什么选择Scrapy+Playwright组合?Scrapy
- 【5G-A通感一体 】司法办案
flyair_China
5G
一、司法办案1.1、技术整合框架:构建司法智能办案引擎1.底层数据融合平台金税四期金融数据:整合企业/个人银行流水、税务申报、跨境支付记录,构建资金流向图谱,自动识别异常交易(如高频拆分转账、关联方循环交易)。5G-A通感一体技术:通过基站雷达信号感知目标位置、速度、轨迹(精度达米级),并与无人机、海岸监控设备联动,实现“空天地”一体化侦查。司法知识图谱:将法律条文、判例、证据规则结构化,支持自动
- DataPipeline与海量数据完成产品互认证,助推数据管理信创生态新进程
近日,DataPipeline与海量数据完成产品互认证工作。经过双方联合严格测试,DataPipeline企业级实时数据融合平台与海量数据库G100管理系统(以下简称:VastbaseG100)能够完全兼容,整体运行稳定高效,可为企业级客户提供可靠的中间件与数据库支撑。以此为基础,双方将共同助力更可靠的国产软件环境,帮助更多客户安全高效地进行信创实践及迁移,加速大中型企业数字化转型。产品兼容互认证
- 自动驾驶---感知模型之BEVFormer
智能汽车人
聊聊自动驾驶技术自动驾驶人工智能机器学习
1前言在自动驾驶领域,传统的感知方法通常基于图像或点云的局部视角,这会导致信息的遮挡和理解的局限性。而鸟瞰图(BEV)视角可以提供全局的场景信息,更适合于自动驾驶中的目标检测、轨迹预测等任务。然而,将不同视角的传感器数据转换到BEV空间并进行有效融合是一个挑战。BEVFormer的提出旨在解决这一问题,通过Transformer架构实现高效的多传感器数据融合和BEV特征表示学习。BEVFormer
- 深度学习多模态融合_3D目标检测多模态融合综述
MAGIC 95
深度学习多模态融合
0前言本篇文章主要想对目前处于探索阶段的3D目标检测中多模态融合的方法做一个简单的综述,主要内容为对目前几篇几篇研究工作的总结和对这个研究方面的一些思考。在前面的一些文章中,笔者已经介绍到了多模态融合的含义是将多种传感器数据融合。在3D目标检测中,目前大都是将lidar和image信息做融合。在上一篇文章中,笔者介绍到了目前主要的几种融合方法,即early-fusion,deep-fusion和l
- 关于电商商品API接口应用的发展趋势和应用
电商数据girl
电商项目API接口测试1688跨境寻源通API接口跨境电商API接口人工智能大数据产品经理jsonpythonoracle
商品API接口应用的未来发展趋势是什么?智能化与自动化深度用户分析:借助人工智能和机器学习技术,对用户行为、消费模式进行深度剖析,比如分析用户在不同场景下的购物偏好,实现超精准个性化推荐,甚至能预测用户的潜在需求,主动推送相关商品。流程自动化:订单处理、库存更新、客户咨询等业务流程,将通过智能算法和规则实现高度自动化,像库存达到下限自动补货下单,智能客服自动处理常见问题等。大数据融合全面数据洞察:
- 基于EKF的三自由度车辆定位算法解析与实践
南风寺山
本文还有配套的精品资源,点击获取简介:扩展卡尔曼滤波器(EKF)是处理非线性系统的有效算法,广泛应用于车辆定位、自动驾驶和机器人导航。本文档提供的源码针对车辆三自由度动态模型实现了EKF,通过传感器数据融合提高了车辆定位的精度。文档详细解析了EKF在车辆定位中的应用,从基础理论到算法流程,再到源码的具体实现,为开发者提供了深入学习EKF的机会,并展示了如何利用EKF实现精确的车辆定位。1.EKF基
- 【ROS2】tf2_ros:坐标变换、坐标系跟踪
郭老二
ROSROS2
【ROS】郭老二博文之:ROS目录1、简介在机器人导航中,tf2用于管理和转换机器人、传感器和环境之间的坐标系;在传感器数据融合中,它帮助同步和整合不同传感器的数据2、接口常用接口如下:1)tf2_ros::StaticTransformBroadcaster说明:用于广播静态坐标变换的类;方法:sendTransform(std::vector)用于发送一个静态的坐标变换的消息。参数:geome
- STM32无人机开发:从入门到精通
DS.Lang2i
stm32无人机嵌入式硬件
本教程将系统性地介绍如何从零开始使用STM32单片机开发四轴无人机,涵盖硬件选型、开发环境搭建、飞控系统设计、传感器集成、控制算法实现及实战优化等内容,结合理论知识与实践案例,帮助开发者逐步掌握无人机开发的核心技能。目录开发基础硬件选型与系统架构飞控系统开发传感器集成与数据融合实战测试与优化高级扩展与未来趋势一、开发基础1.1STM32单片机入门基本架构:STM32基于ARMCortex-M内核(
- 数据融合(Data Fusion)的概念与核心思想
Matlab建模攻城师
数据融合算法数据融合
1.定义与核心目标数据融合(DataFusion)是指通过整合多个来源的异构数据(如传感器、数据库、实时数据流等),生成更全面、准确且具有更高价值的信息表征的过程。其核心目标包括:提升信息质量:通过互补性和冗余性消除单一数据源的误差,增强结果的可靠性与精度。增强决策支持:为复杂场景(如战场评估、医疗诊断)提供多维度的综合分析,优化决策流程。实现“整体大于部分之和”:通过揭示数据间的隐含关联,发现单
- 植被监测新范式!Python驱动机器学习反演NDVI/LAI关键技术解析
梦想的初衷~
生态环境遥感植被python机器学习生态环境监测
在全球气候变化与生态环境监测的重要需求下,植被参数遥感反演作为定量评估植被生理状态、结构特征及生态功能的核心技术,正面临数据复杂度提升、模型精度要求高、多源异构数据融合等挑战。人工智能(AI)技术的快速发展,尤其是机器学习与深度学习算法的突破,为解决这些难题提供了全新路径。AI凭借强大的非线性拟合能力、数据特征自动提取优势及跨模态信息融合潜力,能够高效处理遥感数据中的噪声与不确定性,显著提升植被参
- craw4ai 抓取实时信息,与 mt4外行行情结合实时交易,基本面来觉得趋势方向,搞一个外汇交易策略
一刀到底211
python3craw4aimt4python人工智能
结合实时信息抓取、MT4行情数据、基本面分析的外汇交易策略框架,旨在通过多维度数据融合提升交易决策质量:行不行不知道先试试,理论是对的,只要基本面方向没错策略名称:Tri-Sync外汇交易系统核心理念「基本面定方向+技术面找点位+实时事件过滤」一、数据源整合基本面数据流抓取目标央行声明(Fed/ECB/BOJ官网)经济日历(非农、CPI、利率决议)地缘政治事件(Reuters/Bloomberg关
- 基于大模型的颅前窝底脑膜瘤预测与治疗技术方案
LCG元
大模型医疗研究-技术方向技术方案深度学习人工智能机器学习
目录技术方案概述一、核心算法实现1.多模态数据融合算法(伪代码)2.并发症风险预测模型(伪代码)二、系统模块流程图1.数据采集模块2.预测与决策模块三、系统集成方案1.系统集成流程图2.系统部署拓扑图四、关键技术验证1.模型性能对比表2.典型病例验证流程五、实施保障体系技术方案概述本方案基于深度学习大模型构建颅前窝底脑膜瘤全周期诊疗系统,包含术前精准预测、术中动态决策、术后康复管理三大模块。通过多
- 基于大模型的颅后窝脑膜瘤预测与干预技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习人工智能机器学习
目录技术方案大纲1.摘要2.引言3.技术方案设计3.1术前预测模块3.2术中辅助模块3.3麻醉方案优化3.4术后护理与并发症管理4.技术验证方法4.1数据来源4.2模型训练与测试4.3统计分析5.实验验证证据6.健康教育与指导7.讨论与结论流程图技术方案大纲1.摘要研究背景与目标核心技术(大模型算法、多模态数据融合)创新点(术前预测、术中决策、术后管理一体化)预期成果2.引言颅后窝脑膜瘤的临床特点
- ADAS感知系统硬件和解决方案供应商国外厂家介绍
A阿司匹林
ADAS自动驾驶人工智能自动驾驶机器学习
随着智能驾驶技术的不断进步,自动驾驶与高级驾驶辅助系统(ADAS)已经成为现代汽车发展的关键趋势。为了实现对周围环境的精准感知,ADAS系统依赖于各类硬件传感器,包括摄像头、雷达、激光雷达(LiDAR)、超声波传感器等。此外,ADAS的核心功能还依赖于多传感器数据融合、感知算法与高效的计算平台。因此,ADAS硬件与解决方案的供应商在整个智能驾驶生态系统中扮演着重要的角色。本文将深入探讨主要ADAS
- 基于MONAI框架的医学影像多模态融合与高级AI技术研究
LIUDAN'S WORLD
MONAI高级开发者研究教程专栏人工智能机器学习深度学习pytorch
摘要:随着人工智能(AI)在医疗健康领域的飞速发展,医学影像分析已成为推动精准医疗和临床决策的关键力量。MONAI(MedicalOpenNetworkforAI)作为一个专为医学影像设计的开源PyTorch框架,提供了从数据处理、模型训练到临床部署的全方位支持。本文旨在深入探讨基于MONAI框架的医学影像多模态融合策略及多种高级AI技术的原理与应用。我们将以实用教程的形式,对多模态数据融合(早期
- 数据如何驱动互联网一体化发展?
科技块儿
数据分析
在当今这个信息化、数字化高速发展的时代,互联网已经成为连接世界的桥梁,而数据则成为了这座桥梁上流淌的血液,滋养着互联网一体化的深入发展。数据不仅是信息的载体,更是驱动互联网一体化进程的关键力量。本文旨在探讨数据如何作为核心引擎,推动互联网在技术、应用、服务等多个层面实现更加紧密、高效的一体化。一、数据融合促进技术一体化大数据、云计算、人工智能等前沿技术的广泛应用,使得海量数据能够被快速收集、处理和
- 无人机电子防抖技术要点概述!
云卓SKYDROID
无人机云卓科技科普低空经济高科技
一、技术要点1.传感器数据融合电子防抖需结合陀螺仪、加速度计、视觉传感器等多源数据,实时检测无人机的姿态变化和振动频率。例如,IMU(惯性测量单元)通过加速度计和陀螺仪测量飞行器的姿态和运动状态,结合视觉感知系统的环境数据,为防抖算法提供输入。2.实时图像处理算法高频抖动修正:通过光流法分析相邻帧图像的运动偏移量,调整像素坐标以抵消高频抖动(如采用光流金字塔模型逐层匹配特征点)。低频抖动修正:利用
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite