- Python datetime 模块
AI老李
人工智能pythonpython开发语言
关键要点Python的datetime模块用于处理日期和时间,支持创建、格式化、解析和计算。主要类包括date(日期)、time(时间)、datetime(日期时间组合)、timedelta(时间间隔)和tzinfo(时区)。研究表明,该模块适合数据分析、日志处理和跨时区应用。注意时区处理,datetime默认是“naive”(无时区信息)的,需要显式指定时区。模块简介Python的datetim
- Naive 组件库 动态渲染icon图标
使用Naive组件库默认你已经安装了对应的icon图标库没有安装的参考链接安装点击传送Naive组件动态渲染Icon图标主要是使用componentVue内置组件来渲染对应的icon组件,配合h函数来修改图标组件颜色//导入你对应的图标库import{FireFilled,ArrowUpOutlined,DollarOutlined,LaptopOutlined}from'@vicons/antd
- Vue3 PC端 UI组件库我更推荐Naive UI
梅山老幺
Vueui前端vue.js
一、Vue3生态现状与UI库选择的重要性随着Vue3的稳定发布和CompositionAPI的广泛采用,前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率,还能确保项目的长期可维护性。本文将对比三大主流Vue3UI库(NaiveUI、ElementPlus、AntDesignVue),通过详实的数据和实际案例,证明NaiveUI的卓越之处。二、核心架构深度解析2.1设计哲学对比
- Python训练营---Day44
2501_91182850
Python训练营python机器学习深度学习
DAY44预训练模型知识点回顾:预训练的概念常见的分类预训练模型图像预训练模型的发展史预训练的策略预训练代码实战:resnet18作业:尝试在cifar10对比如下其他的预训练模型,观察差异,尽可能和他人选择的不同尝试通过ctrl进入resnet的内部,观察残差究竟是什么选用DenseNet121预训练模型,注意DenseNet121模型的最后分类层名为classifier,而不是ResNet中的
- Spark MLlib模型训练—分类算法 Decision tree classifier
猫猫姐
Spark实战spark-ml分类决策树
SparkMLlib模型训练—分类算法Decisiontreeclassifier决策树(DecisionTree)是一种经典的机器学习算法,广泛应用于分类和回归问题。决策树模型通过一系列的决策节点将数据划分成不同的类别,从而形成一棵树结构。每个节点表示一个特征的分裂,叶子节点代表最终的类别标签。在大数据场景下,SparkMLlib提供了对决策树的高效实现,能够处理大规模数据集并生成复杂的分类模型
- 建立多项式朴素贝叶斯模型实战指南
万能小贤哥
机器学习人工智能算法
一、模型选择与实现针对文本分类任务(如垃圾邮件识别),多项式朴素贝叶斯(MultinomialNB)是最优选择:适用场景:处理离散型特征(如词频、TF-IDF值)核心优势:直接利用整数型词频特征,无需假设数据分布对比区别:高斯朴素贝叶斯:假设特征符合正态分布,适合连续型数据伯努利朴素贝叶斯:处理二值化特征(是否存在某个词)python复制下载fromsklearn.naive_bayesimpor
- 利用 Python 破解 ZIP 压缩文件密码:基于字典与暴力破解的多线程实现——代码
脑子不好真君
实用文zip密码破解
rockyou.txt下载地址:https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt"dictionary"模式(字典攻击):使用一个预定义的密码列表(即“字典”)逐一尝试解压ZIP文件,直到找到正确密码或尝试完所有密码。"brute"模式(暴力破解):程序会根据指定的字符集(如数字、字母
- LangChain4j(12)——Naive RAG
老任与码
开发语言LangChain4j人工智能
上篇文章,我们介绍了RAG的基本,并且使用的是LangChain4j中提到的EasyRAG,EasyRAG只是提供了对RAG认知的一个基本方式,对外隐藏了很多实现细节。本文讲解LangChain4j中提到的NaiveRAG,之所以称为NaiveRAG,只是为了和AdvancedRAG做个区分,表示其没有使用到AdvancedRAG的一些高级语法。NaiveRAG代码packagecom.renr.
- spring-boot-maven-plugin插件配置classifier打不出-exec.jar
阿狸尬多
javaspringmavenjar
场景:springboot默认打出的包是无法被依赖的,可以对spring-boot-maven-plugin插件配置classifier属性,生成两个jar包,一个是可执行的jar,一个是可以被依赖的jar问题描述配置了spring-boot-maven-plugin插件配置classifier属性,执行package命令,却没有打出-exec.jar包org.springframework.bo
- “model.classifier.in_features 是啥鬼?
背太阳的牧羊人
人工智能人工智能机器学习
很多人第一次看到DenseNet时最迷糊的一句:“model.classifier.in_features是啥鬼?为啥不能直接用数字?”我来给你拆开讲透彻,说明它的本质是什么。先看这句代码:num_ftrs=model.classifier.in_features✅意思是:从DenseNet121这个预训练模型中取出最后一层分类器(classifier)输入的维度数。这个数字我们要用来创建我们自己
- pytorch,numpy根据权重取值 -- np.random.multinomial,np.random.choice和torch.multinomial函数
*Lisen
pytorchNLPnumpytorchpytochnlp
np.random.multinomial(n,pvals,size=None)->取到的次数分布数组该函数表示根据一个概率数组,取若干次,得到一个次数分布数组参数说明:–n:从矩阵中取值次数;–pvals:根据概率取值,这是一个数组,并且所有数据之和为1;–size:输出的维度,默认为1,即1xpvals例子:a=np.random.rand(6)print(a)#array([0.028634
- 手写 CPU 卷积核加速神经网络计算(1)——naive 实现 卷积、池化、激活、全连接、批归一化(python 实现)
哦豁灬
深度学习学习笔记神经网络python人工智能卷积核
1Conv2ddefconv2d(input_numpy,kernel_weight_numpy,kernel_bias_numpy,padding=0):B,Ci,Hi,Wi=input_numpy.shapeinput_pad_numpy=torch.zeros(B,Ci,Hi+2*padding,Wi+2*padding)ifpadding>0:input_pad_numpy[:,:,pad
- 第10期:Classifier-Free Guidance(CFG)——扩散模型的文本引导增强术
厚衣服_3
计算机视觉人工智能机器学习
“如何让扩散模型更强地听话?”在第9期中,我们成功实现了CLIP+Diffusion的文本引导图像生成模型。虽然能生成与文本描述大致匹配的图像,但你会发现:有时图像与文本契合度不高;控制力不够,输入"aredcar"也可能出现黄色或蓝色;文本引导效果“太温柔”了。这时候,Classifier-FreeGuidance(简称CFG)就派上用场了。一、什么是Classifier-FreeGuidanc
- RAGFlow嵌入自定义文件解析代码
内卷焦虑人士
ragragflow人工智能
目录一、写自己的文档解析代码1、`def__call__`2、`defparser_txt`3、`__init__.py`二、导入到naive.py1、找到文件2、添加代码三、file_utils.py1、找到文件2、重启容器附:行业词库添加进入docker容器dockerexec-itragflow-server/bin/bash一、写自己的文档解析代码来到路径/ragflow/deepdoc/
- [Machine Learning] 贝叶斯公式 & 全概率公式(Bayes Rule & Total Probability Theorem)
Oh_MyBug
MachineLearning概率论机器学习人工智能
KeywordsBayesRule(贝叶斯公式)TotalProbabilityTheorem(全概率公式)PriorProbability(先验概率)PosteriorProbability(后验概率)举个例子如图,这是一个简单两步式的模型。现在我们需要完成事件BBB,那么可以有n种不同的路A1,A2,A3,...,AnA_1,A_2,A_3,...,A_nA1,A2,A3,...,An选择:如
- LLMs之RAG:解读RAG主流的七类架构(Naive RAG/Retrieve-and-rerank/Multimodal RAG/GraphRAG/HybridRAG/Agentic RAG(Ro
一个处女座的程序猿
RAG_AgentNLP/LLMsRAGLLMsAgent
LLMs之RAG:解读RAG主流的七类架构(NaiveRAG/Retrieve-and-rerank/MultimodalRAG/GraphRAG/HybridRAG/AgenticRAG(Router)/AgenticRAG(Multi-Agent))目录解读RAG主流的七类架构(NaiveRAG/Retrieve-and-rerank/MultimodalRAG/GraphRAG/Hybrid
- Auto-encoding Variational Bayes 阅读笔记
元气少女wuqh
PaperReading
Notationpθ(z|x)pθ(z|x):intractableposteriorpθ(x|z)pθ(x|z):probabilisticdecoderqϕ(z|x)qϕ(z|x):recognitionmodel,variationalapproximationtopθ(z|x)pθ(z|x),alsoregardedasaprobabilisticencoderpθ(z)pθ(x|z)pθ
- Auto-Encoding Variational Bayes论文笔记
catbird233
深度生成模型笔记vae论文笔记
本文地址:http://blog.csdn.net/qq_31456593/article/details/77743840深度学习博客目录:http://blog.csdn.net/qq_31456593/article/details/69340697introduce这篇论文将变分贝叶斯和神经网络结合起来,用神经网络学习变分推导的参数,以得到后验推理p(z|x)的似然,并获得了一个效果不错的
- 【笔记】扩散模型(五):Classifier-Free Guidance 理论推导与代码实现
LittleNyima
DiffusionModels笔记机器学习深度学习
论文链接:Classifier-FreeDiffusionGuidance上一篇文章我们学习了ClassifierGuidance,这种方法通过引入一个额外的分类器,使用梯度引导的方式成功地实现了条件生成。虽然ClassifierGuidance可以直接复用训练好的diffusionmodels,不过这种方法的问题是很明显的,首先需要额外训练一个分类器,而且这个分类器不仅仅分类一般的图像,还需要分
- 聊聊langchain4j的Naive RAG
hello_ejb3
人工智能
序本文主要研究一下langchain4j的NaiveRAG示例publicclassNaive_RAG_Example{/***ThisexampledemonstrateshowtoimplementanaiveRetrieval-AugmentedGeneration(RAG)application.*By"naive",wemeanthatwewon'tuseanyadvancedRAGte
- 逐行讲解大模型解码超参数大全(temperature、top-k、top-p等所有参数)
Gaffey大杂烩
大模型机器学习人工智能
目录简介宏观概览解码策略实现逻辑常见的解码超参数temperature温度系数top_ktop_prepetition_penalty重复惩罚不常见的解码超参数min_ptypical解码ϵ采样η采样Classifier-FreeGuidance(CFG)序列偏置干预HammingDiversity编码器重复惩罚n-gram重复惩罚编码器n-gram重复惩罚bad_token惩罚最小长度限制最小新
- Maven中dependency标签参数
lgily-1225
日常积累mavenjava后端
Maven中dependency标签参数如下:一、type有时候我们引入某一个依赖时,必须指定type,这是因为用于匹配dependency引用和dependencyManagement部分的最小信息集实际上是{groupId,artifactId,type,classifier}。在很多情况下,这些依赖关系将引用没有classifier的jar依赖。这允许我们将标识设置为{groupId,art
- 【MALTAB递归预测未来】VMD-Bayes-LSTM单变量时序预测-递归预测未来 (单输入单输出)
前程算法屋
私信获取源码lstm人工智能rnn
VMD-Bayes-LSTM单变量时序预测递归预测未来MALTAB代码一、引言1.1单变量时序预测的背景和意义在当今快速发展的社会中,数据无处不在,而时间序列数据作为其中一种重要类型,在众多领域发挥着不可替代的作用。单变量时序预测,即对单一变量随时间变化趋势的预测,在工业、经济等领域具有极其重要的意义。工业生产是国民经济的支柱产业,其稳定运行对整个社会经济发展至关重要。在制造业中,设备是生产的基础
- 聊聊langchain4j的Naive RAG
langchain4j
序本文主要研究一下langchain4j的NaiveRAG示例publicclassNaive_RAG_Example{/***ThisexampledemonstrateshowtoimplementanaiveRetrieval-AugmentedGeneration(RAG)application.*By"naive",wemeanthatwewon'tuseanyadvancedRAGte
- github 仓库查看git第一次commit的记录
HHHHy2019
GITgithubgit
github仓库查看git第一次commit的记录步骤我们这里选仓库TuSimple/naive-ui,首页显示这个仓库最新的git的状态是8978fa923minutesagoGitstats4,460commits,说明现在有4460个commit。我们再点击4,460commits进入查看commit的页面,滑到最底部,点击Older,(网址)地址栏显示为https://github.com
- 扩散模型中三种加入条件的方式:Vanilla Guidance,Classifier Guidance 以及 Classifier-Free Guidance
AIGC_ZY
DiffusionModels机器学习计算机视觉深度学习
扩散模型主要包括两个过程:前向扩散过程和反向去噪过程。前向过程逐渐给数据添加噪声,直到数据变成纯噪声;反向过程则是学习如何从噪声中逐步恢复出原始数据。在生成过程中,模型从一个随机噪声开始,通过多次迭代去噪,最终生成有意义的数据,比如图像。这时候,如果需要生成特定类别的数据,比如生成猫的图像而不是狗的,就需要加入条件引导,控制生成的方向。这就是条件扩散模型的作用。VanillaGuidance、Cl
- Pytorch神经网络魔改之:模型融合 - 速通(1)
lczdyx
pytorch神经网络深度学习python人工智能
本文将以几种常见方法为例,介绍如何进行Pytorch神经网络的模型融合:1.子模型串联(SequentialConcatenation)在这个方法中,输入数据x首先通过FeatureExtractor(即:子模型1),处理后的结果再传递给Classifier(即:子模型2)。最后,返回Classifier的输出。这种方式允许将两个子模型串联起来,形成一个组合模型:importtorch.nnasn
- 有了HTTP,为什么还要RPC?
凌志学java
java编程rpchttp网络
很长时间以来都没有怎么好好搞清楚RPC(即RemoteProcedureCall,远程过程调用)和HTTP调用的区别,不都是写一个服务然后在客户端调用么?这里请允许我迷之一笑~Naive!本文简单地介绍一下两种形式的C/S架构,先说一下他们最本质的区别,就是RPC主要是基于TCP/IP协议的,而HTTP服务主要是基于HTTP协议的。我们都知道HTTP协议是在传输层协议TCP之上的,所以效率来看的话
- vue3 naive ui+java下载文件
weixin_42485982
javavue
java后端代码importorg.springframework.http.HttpHeaders;importorg.springframework.http.MediaType;importorg.springframework.http.ResponseEntity;importorg.springframework.web.bind.annotation.GetMapping;impor
- Naive UI去掉n-select下拉框边框,去掉n-input输入框边框
大得369
uijavascript开发语言
1、第一种通过js去掉222233import{ref,onMounted}from'vue';//初始化好后执行onMounted(()=>{//获取元素集合,去掉n-select下拉框的边框constmyDivs=document.getElementsByClassName('n-base-selection');//检查是否有匹配的元素if(myDivs.length>0){for(let
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>