Codeforces Round #292 (Div. 2) C. Drazil and Factoria

C. Drazil and Factorial
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Drazil is playing a math game with Varda.

Let's define  for positive integer x as a product of factorials of its digits. For example, .

First, they choose a decimal number a consisting of n digits that contains at least one digit larger than 1. This number may possibly start with leading zeroes. Then they should find maximum positive number x satisfying following two conditions:

1. x doesn't contain neither digit 0 nor digit 1.

2.  = .

Help friends find such number.

Input

The first line contains an integer n (1 ≤ n ≤ 15) — the number of digits in a.

The second line contains n digits of a. There is at least one digit in a that is larger than 1. Number a may possibly contain leading zeroes.

Output

Output a maximum possible integer satisfying the conditions above. There should be no zeroes and ones in this number decimal representation.

Sample test(s)
input
4
1234
output
33222
input
3
555
output
555
Note

In the first case, 

题目大意:

我们定义F(x)x的每一位数的阶乘的乘积,比如  。

现在题目给你一个x,要你求出aa满足:

 

1.a的任何一位都不包括0

2.F(x) = F(a) 

3.a必须是满足以上两个条件的最大的数。

 

大致思路:

 

一开始以为这道C又是不可做题(对我来说……),特别是看到要求a的最大值,因为又没限制范围,所以更加觉得做不出来,奈何前两题太容易,剩下的时间太多,索性也就想想,然后就突然想到既然是求最大的数,说明这个数不可能遍历,其实这也算一个提示,说明这道题有特殊的方法求解,然后就发现要使a最大,就要把x的每一位能拆成多位的就拆出来,这样数就变大了。

这道题其实也很简单,然后总结出下面各个数字的拆分(只有素数拆分不了):

 

0, 1 -> empty

 

2 -> 2

 

3 -> 3

 

4 -> 322

 

5 -> 5

 

6 -> 53

 

7 -> 7

 

8 -> 7222

 

9 -> 7332

 

举个例子,9! == 7! * 3!* 3!* 2!,所以这道题就出来了…

 

下面放出代码:

 

//CF_292_C.cpp
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
typedef long long ll;
using namespace std;
const int maxn = 15 + 10;
const int maxm = 20000 + 10;
int n, kry[maxn], stal[maxm];
int fx[maxn][maxm] = {{0}, {0}, {2}, {3}, {3, 2, 2}, {5},
 {5, 3}, {7}, {7, 2, 2, 2}, 
{7, 3, 3, 2}, };
int main(void)
{
	cin>>n;
	for( int i=0; i());
	for( int i=0; i


你可能感兴趣的:(CodeForces,Acm_math)