SLAM中光流算法

光流场(Optical Flow Field)法的基本思想:在空间中,运动可以用运动场描述,而在一个图像平面上,物体的运动往往是通过图像序列中不同图像灰度分布的不同体现的,从而,空间中的运动场转移到图像上就表示为光流场。光流场反映了图像上每一点灰度的变化趋势,可看成是带有灰度的像素点在图像平面上运动而产生的瞬时速度场,也是一种对真实运动场的近似估计。光流是图像中亮度图案的表观运动,而运动场是三维物体的实际运动在图像平面上的投影,在理想情况下二者相互吻合。

 光流的研究是利用图像序列中的像素强度数据的时域变化和相关性来确定各自像素位置的“运动”。研究光流场的目的就是为了从图片序列中近似得到不能直接得到的运动场。

那通俗的讲就是通过一个图片序列,把每张图像中每个像素的运动速度和运动方向找出来就是光流场。那怎么找呢?咱们直观理解肯定是:第t帧的时候A点的位置是(x1, y1),那么我们在第t+1帧的时候再找到A点,假如它的位置是(x2,y2),那么我们就可以确定A点的运动了:(ux, vy) = (x2, y2) - (x1,y1)。

光流法的前提假设:

(1)相邻帧之间的亮度恒定;

(2)相邻视频帧的取帧时间连续,或者,相邻帧之间物体的运动比较“微小”;

(3)保持空间一致性;即,同一子图像的像素点具有相同的运动

为什么要用金字塔?因为LK算法的约束条件即:小速度,亮度不变以及区域一致性都是较强的假设,并不很容易得到满足。如当物体运动速度较快时,假设不成立,那么后续的假设就会有较大的偏差,使得最终求出的光流值有较大的误差。
考虑物体的运动速度较大时,算法会出现较大的误差。那么就希望能减少图像中物体的运动速度。

一个直观的方法就是,缩小图像的尺寸。假设当图像为400×400时,物体速度为[16 16],那么图像缩小为200×200时,速度变为[8,8]。缩小为100*100时,速度减少到[4,4]。所以在源图像缩放了很多以后,原算法又变得适用了。所以光流可以通过生成原图像的金字塔图像,逐层求解,不断精确来求得。简单来说上层金字塔(低分辨率)中的一个像素可以代表下层的两个。

对于Lucas-Kanade改进算法来说,主要的步骤有三步:建立金字塔,基于金字塔跟踪,迭代过程。

算法流程

首先、对每一帧建立一个高斯金字塔,最低分辨率在最顶层,原始图片在底层。

SLAM中光流算法_第1张图片

 

ref:

https://blog.csdn.net/weixin_42905141/article/details/102647830

https://blog.csdn.net/u014568921/article/details/46638557

你可能感兴趣的:(vins-mono,SLAM,slam)