There are n n n segments drawn on a plane; the i − t h i-th i−th segment connects two points ( x i 1 , y i , 1 ) (x_{i1}, y_{i,1}) (xi1,yi,1) and ( x i , 2 , y i , 2 ) (x_{i,2}, y_{i,2}) (xi,2,yi,2). Each segment is non-degenerate, and is either horizontal or vertical — formally, for every ?∈[1,?] either x i , 1 = x i , 2 x_{i,1}=x_{i,2} xi,1=xi,2 or y i , 1 = y i , 2 y_{i,1}=y_{i,2} yi,1=yi,2 (but only one of these conditions holds). Only segments of different types may intersect: no pair of horizontal segments shares any common points, and no pair of vertical segments shares any common points.
We say that four segments having indices h 1 , h 2 , v 1 a n d v 2 h_1, h_2, v_1 and v_2 h1,h2,v1andv2 such that h 1 < h 2 h_1<h_2 h1<h2 and v 1 < v 2 v_1<v_2 v1<v2 form a rectangle if the following conditions hold:
segments h 1 h_1 h1 and h 2 h_2 h2 are horizontal;
segments v 1 v_1 v1 and v 2 v_2 v2 are vertical;
segment h 1 h_1 h1 intersects with segment v 1 v_1 v1;
segment h 2 h_2 h2 intersects with segment v 1 v_1 v1;
segment h 1 h_1 h1 intersects with segment v 2 v_2 v2;
segment h 2 h_2 h2 intersects with segment v 2 v_2 v2.
Please calculate the number of ways to choose four segments so they form a rectangle. Note that the conditions h 1 < h 2 h_1<h_2 h1<h2 and v 1 < v 2 v_1<v_2 v1<v2 should hold.
The first line contains one integer n ( 1 ≤ n ≤ 5000 ) n (1\leq n\leq 5000) n(1≤n≤5000) — the number of segments.
Then n n n lines follow. The i − t h i-th i−th line contains four integers x i , 1 , y i , 1 , x i , 2 x_{i,1}, y_{i,1}, x_{i,2} xi,1,yi,1,xi,2 and y i , 2 y_{i,2} yi,2 denoting the endpoints of the i − t h i-th i−th segment. All coordinates of the endpoints are in the range [ − 5000 , 5000 ] [−5000,5000] [−5000,5000].
It is guaranteed that each segment is non-degenerate and is either horizontal or vertical. Furthermore, if two segments share a common point, one of these segments is horizontal, and another one is vertical.
Print one integer — the number of ways to choose four segments so they form a rectangle.
7
-1 4 -1 -2
6 -1 -2 -1
-2 3 6 3
2 -2 2 4
4 -1 4 3
5 3 5 1
5 2 1 2
7
5
1 5 1 0
0 1 5 1
5 4 0 4
4 2 4 0
4 3 4 5
0
The following pictures represent sample cases:
#include
using namespace std;
const int maxn=5005;
const int maxl=1e4+2;
int n;
vector<pair<int,int> >hor[maxl],ver[maxl];
vector<int> cur[maxl];
struct node{
int sum[maxl];
int lowbit(int x) {return x&(-x);}
void add(int id,int val){
for(int i=id;i<maxl;i+=lowbit(i)){
sum[i]+=val;
}
}
int query(int id){
int ans=0;
for(int i=id;i>=1;i-=lowbit(i)){
ans+=sum[i];
}
return ans;
}
int s(int l,int r){
return query(r)-query(l-1);
}
void clear(){memset(sum,0,sizeof(sum));}
}bit;
int main()
{
scanf("%d",&n);
for(int i=1,x1,x2,y1,y2;i<=n;i++){
scanf("%d %d %d %d",&x1,&y1,&x2,&y2);
x1+=5001;x2+=5001;y1+=5001;y2+=5001;
if(y1==y2) hor[y1].push_back(make_pair(min(x1,x2),max(x1,x2)));
else ver[x1].push_back(make_pair(min(y1,y2),max(y1,y2)));
}
long long ans=0;
for(int i=1;i<maxl;i++) {
for(auto h1:hor[i]) {
bit.clear();
for(int j=1;j<maxl;j++) cur[j].clear();
for(int j=h1.first;j<=h1.second;j++){
for(auto v:ver[j]){
if(v.first<=i&&v.second>i){
cur[v.second].push_back(j);
bit.add(j,1);
}
}
}
for(int y2=i+1;y2<maxl;y2++){
for(auto h2:hor[y2]) {
int res=bit.s(h2.first,h2.second);
ans+=1LL*res*(res-1)/2;
}
for(auto j:cur[y2]) bit.add(j,-1);
}
}
}
printf("%lld\n",ans);
}