- Tensorflow 实现 Word2Vec
王小鸟_wpcool
今天学习了一下《Tensorflow实战》这本书中第7章内容,利用tensorflow实现word2vec。其实书中内容就是Tensorflow教程中的例子,现在挣钱真容易。附链接https://github.com/tensorflow/tensorflow/blob/r0.12/tensorflow/examples/tutorials/word2vec/word2vec_basic.py代码
- 深度学习的发展历程
SnowScholar
深度学习机器学习深度学习神经网络发展历程
参考书籍《Tensorflow实战Google深度学习框架》郑泽宇等要想学习深度学习这门技术,那么有必要对其发展作一定程度的了解。深度学习其实不是一门新技术,目前大家熟悉的“深度学习”基本上是深度神经网络的一个代名词,神经网络技术可追溯到1943年。深度学习之所以被人们认为是新技术,那是因为它在21世纪初并不流行。神经网络的发展不是一番风顺,它的发展经历了三个起落,也可分为三个阶段。第一阶段:受到
- Tensorflow实战深度学习笔记一
独立开发者Lau
人类直观能力----人工智能(自然语言理解、图像识别、语音识别等)。经验----机器学习。训练----特征相关度。特征提取深度学习---自动地将简单的特征组合成更加复杂的特征,并使用这些复杂特征解决问题。深度学习--------不等于模仿人类大脑。
- 4.3 TensorFlow实战三(3):MNIST手写数字识别问题-多层神经网络模型
大白猿学习笔记
一、多层神经网络解决MNIST问题1.构建多层神经网络模型在4.2节我们使用了单层神经网络来解决MNIST手写数字识别问题,提高了识别性能。很容易想到,能否增加隐藏层数量来进一步提高模型预测的的准确率。这一节我们尝试构建两层神经网络模型。代码方面,只需要修改隐藏层构建到输出层构建的一部分即可#构建多隐藏层(2层)H1_NN=256#第1隐藏层神经元的数量w1=tf.Variable(tf.rand
- TensorFlow实战教程(三十五)-VS Code配置Python编程和Keras环境及手写数字识别(基础篇)
张志翔的博客
TensorFlow实战教程pythontensorflowkeras
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章利用Keras构建无监督学习Autoencoder模型并实现聚类分析。这篇文章将介绍基础知识,因为很多读者咨询我如何用VSCode配置Keras深度学习环境,并对比常用的深度学习框架,最后普及手写数字识别案例。基础性文章,希望对您有所帮助一.VSCode安装Python在介绍代码之前,先讲解Python常用的开发
- TensorFlow实战教程(二十五)-基于BiLSTM-CRF的医学命名实体识别研究(下)模型构建
张志翔的博客
TensorFlow实战教程tensorflow人工智能python
这篇文章写得很冗余,但是我相信你如果真的看完,并且按照我的代码和逻辑进行分析,对您以后的数据预处理和命名实体识别都有帮助,只有真正对这些复杂的文本进行NLP处理后,您才能适应更多的真实环境,坚持!毕竟我写的时候也看了20多小时的视频,又写了20多个小时,别抱怨,加油~上一篇文章处理后的数据格式如下图所示,将一个个句子处理成了包含六元组的CSV文件,这篇文章将介绍BiLSTM-CRF模型搭建及训练、
- TensorFlow实战教程(十九)-Keras搭建循环神经网络分类案例及RNN原理详解
张志翔的博客
TensorFlow实战教程tensorflowkerasrnn
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章分享了卷积神经网络CNN原理,并通过Keras编写CNN实现了MNIST分类学习案例。这篇文章将详细讲解循环神经网络RNN的原理知识,并采用Keras实现手写数字识别的RNN分类案例及可视化呈现。基础性文章,希望对您有所帮助!一.循环神经网络在编写代码之前,我们需要介绍什么是RNN,RNN是怎样运行的以及RNN的
- TensorFlow实战教程(二十四)-基于BiLSTM-CRF的医学命名实体识别研究(上)数据预处理
张志翔的博客
TensorFlow实战教程tensorflow人工智能python
这篇文章写得很冗余,但是我相信你如果真的看完,并且按照我的代码和逻辑进行分析,对您以后的数据预处理和命名实体识别都有帮助,只有真正对这些复杂的文本进行NLP处理后,您才能适应更多的真实环境,坚持!毕竟我写的时候也看了20多小时的视频,又写了20多个小时,别抱怨,加油~一.什么是命名实体识别实体是知识图谱最重要的组成,命名实体识别(NamedEntityRecognition,NER)对于知识图谱构
- TensorFlow实战教程(二十八)-Keras实现BiLSTM微博情感分类和LDA主题挖掘分析
张志翔的博客
TensorFlow实战教程tensorflowkeras分类
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章通过Keras深度学习构建CNN模型识别阿拉伯手写文字图像,一篇非常经典的图像分类文字。这篇文章将结合文本挖掘介绍微博情感分类知识,包括数据预处理、机器学习和深度学习的情感分类,后续结合LDA进行主题挖掘。基础性文章,希望对您有所帮助!一.BiLSTM模型LSTM的全称是LongShort-TermMemory,
- TensorFlow实战教程(一)-TensorFlow环境部署
张志翔的博客
TensorFlow实战教程tensorflow人工智能python
从本篇文章开始,作者正式开始研究Python深度学习、神经网络及人工智能相关知识。第一篇文章主要讲解神经网络基础概念,同时讲解TensorFlow2.0的安装过程及基础用法,主要结合作者之前的博客和"莫烦大神"的视频介绍,后面随着深入会讲解具体的项目及应用。基础性文章,希望对您有所帮助,如果文章中存在错误或不足之处,还请海涵~同时自己也是人工智能的菜鸟,希望大家能与我在这一笔一划的博客中成长起来。
- TensorFlow实战教程(十七)-Keras搭建分类神经网络及MNIST数字图像案例分析
张志翔的博客
TensorFlow实战教程tensorflowkeras分类
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章详细讲解了Keras环境搭建、入门基础及回归神经网络案例。本篇文章将通过Keras实现分类学习,以MNIST数字图片为例进行讲解。基础性文章,希望对您有所帮助!一.什么是分类学习1.Classification我们之前文章解决的都是回归问题,它预测的是一个连续分布的值,例如房屋的价格、汽车的速度、Pizza的价格
- [TensorFlow 学习笔记-03]TensorFlow简介
caicaiatnbu
TensorFlow学习笔记深度学习TensorFlow
[版权说明]TensorFlow学习笔记参考:李嘉璇著TensorFlow技术解析与实战黄文坚唐源著TensorFlow实战郑泽宇顾思宇著TensorFlow实战Google深度学习框架乐毅王斌著深度学习-Caffe之经典模型详解与实战TensorFlow中文社区http://www.tensorfly.cn/极客学院著TensorFlow官方文档中文版TensorFlow官方文档英文版以及各位大
- 免费教材丨第55期:Python机器学习实践指南、Tensorflow 实战Google深度学习框架
人工智能爱好者俱乐部
小编说时间过的好快啊,小伙伴们是不是都快进入寒假啦?但是学习可不要落下哦!本期教材本期为大家发放的教材为:《Python机器学习实践指南》、《Tensorflow实战Google深度学习框架》两本书,大家可以根据自己的需要阅读哦!《Python机器学习实践指南》内容简介机器学习是近年来渐趋热门的一个领域,同时Python语言经过一段时间的发展也已逐渐成为主流的编程语言之一。本书结合了机器学习和Py
- Tensorflow入门(七)——CNN经典模型:LeNet
陈陈陈Chann
#Tensorflow卷积神经网络tensorflow深度学习机器学习
上一节《Tensorflow入门(六)——初识卷积神经网络(CNN)》实战篇《Tensorflow实战(二)——MNIST(CNN实现)》原文链接:https://my.oschina.net/u/876354/blog/1632862本文在原文基础上进行细微的修改和完善。文章目录1.CNN的三个特点1.1局部感知1.2参数(权值)共享1.3池化2.LeNet52.1C1层(卷积层):6@28×2
- 深度之眼-机器学习总结
任嘉平生愿
为期三个月的西瓜书机器学习训练营结束,昨天听完了毕业典礼。我做了如下总结:校长讲话:定目标短时间自己的小团队闭环开环闭环----学习小部分就应用时间和努力的堆积打比赛应用人工智能的课题和方向资料tensorflow实战google深度学习框架和强者学习才会遇强则强博士讲话:1.坚持写博客2.github3.多练习4.英文原版的文章高级课程你目前的弱点是什么5.多读论文
- 机器学习(19)---神经网络详解
冒冒菜菜
机器学习从0到1机器学习人工智能神经网络笔记
神经网络一、神经网络概述1.1神经元模型1.2激活函数二、感知机2.1概述2.2实现逻辑运算2.3多层感知机三、神经网络3.1工作原理3.2前向传播3.3Tensorflow实战演示3.3.1导入数据集查看3.3.2数据预处理3.3.3建立模型3.3.4评估模型四、反向传播五、例题5.1题15.2题2一、神经网络概述1.1神经元模型 1.这里采用最广泛一种定义:神经网络是由适应性的简单单元组成的广
- TensorFlow实战(五)Deep Dream(计算机生成梦幻图像)——理解深度神经网络结构及应用
young974
一、疑问卷积层究竟学到了什么内容?同一卷积层中不同通道学习到的内容有什么区别?浅层的卷积和深层的卷积学习到的内容有什么区别?二、DeepDream技术原理DeepDream生成梦幻图像1.利用CNN进行图像分类:CNN的图像分类2.DeepDream使用梯度上升的方法可视化网络每一层的特征,即用一张噪声图像输入网络,反向更新的时候不更新网络权重,而是更新初始图像的像素值,(这里卷积神经网络是固定的
- 机器学习实战:Python基于NN神经网络进行分类(十一)
Bioinfo Guy
机器学习Python机器学习python神经网络
文章目录1前言1.1神经网络的介绍1.2神经网络的应用2.Tensorflow实战演示2.1导入函数2.2导入数据2.3数据预处理2.4建立神经网络2.5训练模型2.6评估模型2.7预测3.讨论1前言神经网络(Neuralnetwork,NN)机器学习是一种基于人工神经网络的机器学习方法,它模拟了人类神经系统的工作原理。神经网络是由多个人工神经元组成的网络结构,每个神经元都接收输入信号、进行计算并
- 【Manning2022新书】TensorFlow实战
数据派THU
神经网络机器学习人工智能深度学习java
来源:专知本文为书籍介绍,建议阅读5分钟TensorFlowinAction教你使用TensorFlow2构建、训练和部署深度学习模型。TensorFlowinAction教你使用TensorFlow2构建、训练和部署深度学习模型。在本实用教程中,您将在创建可用于生产的应用(如法语-英语翻译程序和可以编写小说的神经网络)时,亲自构建可重用的技能。您将欣赏从DL基础知识到NLP、图像处理和MLOps
- 深度学习02-神经网络(MLP多层感知器)
liaomin416100569
深度学习神经网络人工智能
文章目录神经网络简介学习路径分类多层感知器(MLP)神经网络认识两层神经网络输入层从输入层到隐藏层从隐藏层到输出层激活层输出的正规化如何衡量输出的好坏反向传播与参数优化过拟合BP算法推导定义算法讲解前向传播反向传播具体实例tensorflow实战加载数据集数据预处理one-host编码keras.utils.to_categorical()构造多层感知器模型tf.keras.Sequentialk
- TensorFlow实战--使用神经网络来实现对鸢尾花数据集的分类
C君莫笑
人生苦短-我用Pythontensorflowpython机器学习
利用单层神经网络实现对鸢尾花数据集的分类使用没有隐含层的单层前馈型神经网络来实现对鸢尾花的分类importpandasaspdimportnumpyasnpimporttensorflowastftf.enable_eager_execution()#关键importmatplotlib.pyplotaspltplt.rcParams['font.sans-serif']="SimHei"plt.
- 线性回归详解及Tensorflow实战
lmn_
AI人工智能AI线性回归算法
0x01线性回归概述线性回归()是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法其表达形式为y=w'x+e,e为误差服从均值为0的正态分布线性回归可能是统计学和机器学习中最著名和最容易理解的算法之一在统计学中,线性回归是一种对标量响应和一个或多个解释变量(也称为因变量和自变量)之间的关系进行建模的线性方法一个解释变量的情况称为简单线性回归(simplelin
- 机器学习笔记(十三):TensorFlow实战五(经典卷积神经网络: LeNet -5 )
LiAnG小炜
机器学习笔记
1-引言之前我们介绍了一下卷积神经网络的基本结构——卷积层和池化层。通过这两个结构我们可以任意的构建各种各样的卷积神经网络模型,不同结构的网络模型也有不同的效果。但是怎样的神经网络模型具有比较好的效果呢?下图展示了CNN的发展历程。经过人们不断的尝试,诞生了许多有有着里程碑式意义的CNN模型。因此我们接下来会学习这些非常经典的卷积神经网络LeNet-5AlexNetVGGInceptionResN
- Tensorflow-图像处理视频课程-唐宇迪-专题视频课程
迪哥有点愁了
视频教程图像处理深度学习tensorflow机器学习人工智能
Tensorflow-图像处理视频课程—491人已学习课程介绍课程以Tensorflow作为核心武器,基于图像处理热点话题进行案例实战。选择当下热门模型,使用真实数据集进行实战演示,通俗讲解整个算法模型并使用tensorflow进行实战,详解其中的原理与代码实现。课程收益掌握如何使用Tensorflow进行图像处理并使用tensorflow实战。讲师介绍唐宇迪更多讲师课程计算机博士,专注于机器学习
- 深度学习之TensorFlow实战2
Mr Robot
深度学习TensorFlow人工智能人工智能深度学习tensorflowpython
TensorFlow基本概念图(Graph):图描述了计算的过程,TensorFlow使用图来表示计算任务。张量(Tensor):TensorFlow使用tensor表示数据。每个Tensor是一个类型化的多维数组。操作(op):图中的节点被称为op(opearation的缩写),一个op获得0个或多个Tensor,执行计算,产生0个或多个Tensor。会话(Session):图必须在称之为“会话
- Day1 #100DaysofMLCoding#
MWhite
2018-8-6个人前置条件:已经将《统计学习方法》《机器学习实战》一刷80%西瓜书一刷50%,tensorflow实战一刷70%kaggle上参与过titanic(Top6%)和数字识别(Top12%)比较了解pandas,numpy,matplotlib,seaborn,tensorflow,sklearn今日计划复习数学模型基础看深度学习博客——太长了悠闲时看视觉CV博客一colah个人博客
- TensorFlow实战(四)MNIST手写数字识别进阶——单、多隐层全连接网络
young974
上节手写数字识别入门用的是单个神经元来处理分类问题,准确率达0.8619。这一节做一些改进,以单隐含层全连接网络为例,可使准确率达0.9744。后进一步调整隐含层数测试发现,加入不同层数隐含层达到的准确率,3层>单层>2层。说明神经网络的层数未必越多越好。单个神经元模型全连接单隐藏层神经网络导入数据集importtensorflowastfimporttensorflow.examples.tut
- TensorFlow实战:LSTM的结构与cell中的参数
星之所望
python
一些参数训练的话一般一批一批训练,即让batch_size个句子同时训练;每个句子的单词个数为num_steps,由于句子长度就是时间长度,因此用num_steps代表句子长度。在NLP问题中,我们用词向量表示一个单词(一个数基本不能表示一个词,大家应该都知道的吧,可以去了解下词向量),我们设定词向量的长度为wordvec_size。LSTM结构中是一个神经网络,即下图的结构就是一个LSTM单元,
- 图像风格快速迁移tensorflow实战
sk千空
一个代码篮子1024程序员节tensorflowpython机器学习深度学习
引言需要解决的问题是:利用tensorflow的快速风格迁移功能,把一张qq的logo图片转换成《星空》油画的风格,并打印输出。如图所示,最右边图像是输入结果,左边两图是输入:一、操作步骤通过两天的学习,修了许多bug,踩了不少坑,终于把实验做成了。现在试着阐述相关的原理和具体操作步骤。这里我把整个实验过程分为4大部分,每个部分都会给出详细的操作步骤。A.软件的安装和配置B.风格迁移代码的理解和操
- 机器学习笔记(十二):TensorFlow实战四(图像识别与卷积神经网络)
LiAnG小炜
机器学习笔记深度学习图像识别卷积神经网络人工智能
1-卷积神经网络常用结构1.1-卷积层我们先来介绍卷积层的结构以及其前向传播的算法。一个卷积层模块,包含以下几个子模块:使用0扩充边界(padding)卷积窗口过滤器(filter)前向卷积反向卷积(可选)1.1.2-边界填充边界填充将会在图像边界周围添加值为0的像素点,如下图所示:使用0填充边界有以下好处:卷积了上一层之后的CONV层,没有缩小高度和宽度,这对建立更深的网络非常重要,否则在更深层
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓