motherboard: Support extended independent graphics card(GPU)
CPU: i7-7* or better
Memory: 16G or more
SSD: 256G or more
GPU: NVIDIA GTX1080Ti
Power: 550W(one GPU)
Ubuntu 16.04
Download
Download(must login first)
Verify the System Has gcc installed:
gcc --version
Type [Apply Changes] then wait some minutes, last restart computer.
last open a terminal,run the following bash code,then if the following figure appears, the driver installation is successful.
nvidia-smi
Type [Legacy Releases] choose the version you want, Here I choose cuda9.0
start install the file with the extension deb:(Once you've downloaded it, follow the installation instructions on the website.)
After installation, we must declare the enviroment variable and write it to the end of '~/.bashrc':
export CUDA_HOME=/usr/local/cuda
export PATH=$PATH:$CUDA_HOME/bin
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
save and quit then run the following code:
source ~/.bashrc
If no any error reports , it's OK!
After downloading the cuDNN package(.tgz) on the official website, then decompressing it with `tar`
tar -xvf cudnn-9.0-linux-x64-v7.4.1.5.tgz
then copy the corresponding file to the cuda directory.
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
then establish the soft connection of cuDNN,
cd /usr/local/cuda/lib64/
sudo rm -rf libcudnn.so libcudnn.so.7
sudo ln -s libcudnn.so.7.4.1 libcudnn.so.7
sudo ln -s libcudnn.so.7 libcudnn.so
sudo ldconfig
that's OK!
apt install python-pip
apt install python3-pip
check:
pip -V
pip3 -V
Then:
pip install virtualenv
pip install virtualenvwrapper
pip3 install virtualenv
pip3 install virtualenvwrapper
declare the enviroment variable and write it to the end of '~/.bashrc':
export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3
export WORKON_HOME=$HOME/.virtualenvs
source ~/.local/bin/virtualenvwrapper.sh
then run
source ~/.bashrc
if no any error report, it's OK!
now create a virtual environment yyf(the name of your virtual environment):
mkvirtualenv yyf
Enter the virtual environment, execute the command,
workon yyf
Exit the virtual environment, execute the command,
deactivate yyf
it's OK!
first enter the virtual environment
workon yyf
then
pip install tensorflow-gpu
wait some minutes
then , check
That's All , Thank you !
cudnn
virtualenv