- 综述论文“A Survey of Zero-Shot Learning: Settings, Methods, and Applications”
硅谷秋水
机器学习机器学习神经网络深度学习
该零样本学习综述,发表于ACMTrans.Intell.Syst.Technol.10,2,Article13(January2019)摘要:大多数机器学习方法着重于对已经在训练中看到其类别的实例进行分类。实际上,许多应用程序需要对实例进行分类,而这些实例的类以前没有见过。零样本学习(Zero-ShotLearning)是一种强大而有前途的学习范例,其中训练实例涵盖的类别与想分类的类别是不相交的。
- 【小贪】项目实战——Zero-shot根据文字提示分割出图片目标掩码
贪钱算法还我头发
#DeepLearning#ComputerVisionAI目标检测深度学习python语义分割Zero-shot
目标描述给定RGB视频或图片,目标是分割出图像中的指定目标掩码。我们需要复现两个Zero-shot的开源项目,分别为IDEA研究院的GroundingDINO和Facebook的SAM。首先使用目标检测方法GroundingDINO,输入想检测目标的文字提示,可以获得目标的anchorbox。将上一步获得的box信息作为SAM的提示,分割出目标mask。具体效果如下(测试数据来自VolumeDef
- Zero-Shot Image Classification总结
夏日小光
1任务说明现有的benchmark通过ImageNet-1k上预训练的Res101从已知类的训练集提取feature或者featuremap,然后对每一个类引入一个语义标签,可能是属性标签(attributelabel)、或者描述标签(sentenceembedding)等。对于某个类的属性标签(向量形式),每个维度表示一种属性,该维度下的取值表示这个属性在该类别中存在的可能性,值得注意的是ben
- Your Diffusion Model is Secretly a Zero-Shot Classifier论文阅读笔记
Rising_Flashlight
论文阅读笔记计算机视觉
YourDiffusionModelisSecretlyaZero-ShotClassifier论文阅读笔记这篇文章我感觉在智源大会上听到无数个大佬讨论,包括OpenAISora团队负责人,谢赛宁,好像还有杨植麟。虽然这个文章好像似乎被引量不是特别高,但是和AI甚至人类理解很本质的问题很相关,即是不是要通过生成来构建理解的问题,文章的做法也很巧妙,感觉是一些学者灵机一动的产物,好好学习一个!摘要这
- 【ChatIE】论文解读:Zero-Shot Information Extraction via Chatting with ChatGPT
Bigcrab__
神经网络Tensorflowchatgpt人工智能深度学习
文章目录介绍ChatIEEntity-RelationTripleExtration(RE)NamedEntityRecognition(NER)EventExtraction(EE)实验结果结论论文:Zero-ShotInformationExtractionviaChattingwithChatGPT作者:XiangWei,XingyuCui,NingCheng,XiaobinWang,Xin
- ICLR 2023#Learning to Compose Soft Prompts for Compositional Zero-Shot Learning
神拳小江南阿
CZSLsoftprompt深度学习
组合零样本学习(CZSL)中SoftPrompt相关工作汇总(一)文章目录组合零样本学习(CZSL)中SoftPrompt相关工作汇总(一)ICLR2023#LearningtoComposeSoftPromptsforCompositionalZero-ShotLearningIntroductionRelatedworkpromptParameter-efficientlearningPrel
- 【阅读笔记】Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs-2018
一只瓜皮呀
零样本学习图神经网络知识图谱深度学习机器学习
Abstract我们考虑零样本识别问题:仅利用类别的单词嵌入及其与其他类别的关系来学习具有零训练示例的类别的视觉分类器,并提供视觉数据。处理陌生或新类的关键是将从熟悉类中获得的知识转移到陌生类的描述中。在本文中,我们基于最近引入的图卷积网络(GCN),提出了一种同时使用语义嵌入和类别关系来预测分类器的方法。对于一个已习得的知识图(KG),我们的方法将每个节点(表示视觉类别)作为输入语义嵌入。经过一
- huggingface pipeline零训练样本分类Zero-Shot Classification的实现
hehui0921
huggingface分类python数据挖掘
1:默认的model。fromhuggingface_hub.hf_apiimportHfFolderHfFolder.save_token('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')fromtransformersimportMBartForConditionalGeneration,MBart50TokenizerFastfromtransformersi
- 论文解读《Zero-Shot Category-Level Object Pose Estimation》类别级6D位姿估计
ZYLer_
6D位姿估计人工智能计算机视觉
论文:《Zero-ShotCategory-LevelObjectPoseEstimation》该文整体感觉不难,处理流程比较新颖,可以重点参考。Code:https://github.com/applied-ai-lab/zero-shot-pose(48star)摘要:解决问题:实例级姿态估计的问题。=>**零样本(也就是预测未见过的物体(没有该实例的数据标记和CAD模型),类别级)**预测来
- 【EAI 013】BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning
datamonday
具身智能(EmbodiedAI)具身智能人工智能模仿学习BC-Z遥操作数据收集
论文标题:BC-Z:Zero-ShotTaskGeneralizationwithRoboticImitationLearning论文作者:EricJang,AlexIrpan,MohiKhansari,DanielKappler,FrederikEbert,CoreyLynch,SergeyLevine,ChelseaFinn论文原文:https://arxiv.org/abs/2202.020
- CLIP 对比预训练 + 文字图像相似度:离奇调查,如何训练视觉大模型?
Debroon
医学大模型:健康长寿#深度学习深度学习
CLIP:如何训练视觉大模型?对比预训练图像编码器文本编码器最大的亮点:zero-shot图像分类总结CLIP论文地址:https://arxiv.org/pdf/2103.00020.pdfCLIP=对比学习+预训练+文字图像相似度。对比预训练传统方法训练视觉模型的方式通常是使用有监督学习方法,需要收集大量图像和对应标签:CLIP采用了一种不需要人工大量标记数据的自监督学习方法。CLIP模型是一
- 论文阅读-Examining Zero-Shot Vulnerability Repair with Large Language Models
Che_Che_
论文阅读语言模型人工智能
1.本文主旨:这篇论文探讨了使用大型语言模型(LLM)进行零射击漏洞修复的方法。人类开发人员编写的代码可能存在网络安全漏洞,新兴的智能代码补全工具是否能帮助修复这些漏洞呢?在本文中,作者研究了大型语言模型(如OpenAI的Codex和AI21的JurassicJ-1)在零射击漏洞修复中的使用。他们研究了如何设计提示来引导LLM生成不安全代码的修复版本,这由于自然语言在语义和句法上有很多种表达方式而
- InstantID: Zero-shot Identity-Preserving Generation in Seconds
猛码Memmat
rob-agent/aigc图像生成深度学习计算机视觉
文章目录IntroductionMainReference记录由国内首创的一个好玩的小项目,图像生成领域的新进展。但我希望现阶段计算机视觉领域的研究能更聚焦在语义分割和三维视觉上,这样能更方便与机器人等产品和工业实体结合。IntroductionInstantID是一个基于扩散模型的图像生成解决方案,能实现从单一参考图像到多样化风格化写真的快速生成。用户只需上传一张自拍,20秒就能得到定制版AI写
- 【论文阅读笔记】InstantID : Zero-shot Identity-Preserving Generation in Seconds
LuH1124
论文阅读笔记图像编辑文生图论文阅读文生图扩散模型人脸识别
InstantID:秒级零样本身份保持生成理解摘要Introduction贡献RelatedWorkText-to-imageDiffusionModelsSubject-drivenImageGenerationIDPreservingImageGenerationMethod实验定性实验消融实验与先前方法的对比富有创意的更多任务新视角合成身份插值多身份区域控制合成结论和未来工作project:
- Revisiting Zero-Shot Abstractive Summarization in the Era of Large Language Models
UnknownBody
LLM语言模型人工智能自然语言处理
本文是LLM系列文章,针对《RevisitingZero-ShotAbstractiveSummarizationintheEraofLargeLanguageModelsfromthePerspectiveofPositionBias》的翻译。从位置偏差看大型语言模型时代零样本抽象概括摘要1引言2相关工作3提出的方法4结果5讨论6结论摘要我们通过测量位置偏差来表征和研究大型语言模型(LLM)中的
- En-Compactness:Self-Distillation Embedding&Contrastive Generation forGeneralized Zero-Shot Learning
computer_vision_chen
人工智能
1.引言基于大量标记数据的图像分类任务[6,16,23]由于深度学习的进步取得了巨大的进展[13,21,55]。然而,深度模型对数据的强烈依赖性使其在某些类别缺乏或甚至没有标记数据的情况下表现不佳[47]。零样本学习(ZSL)[24,35]被提出来解决这一数据缺失问题,通过识别来自未见过类别的对象。首先,它们在已见过的类别上学习分类模型,这些类别提供了训练样本,然后使用类别级别的语义描述符[10,
- 《Towards Robust Monocular Depth Estimation:Mixing Datasets for Zero-shot Cross-dataset Transfer》论文笔记
m_buddy
#DepthEstimationMiDaS深度估计
参考代码:MiDaS1.概述导读:这篇文章提出了一种监督的深度估计方法,其中使用一些很有价值的策略使得最后深度估计的结果具有较大提升。具体来讲文章的策略可以归纳为:1)使用多个深度数据集(各自拥有不同的scale和shift属性)加入进行训练,增大数据量与实现场景的互补;2)提出了一种scale-shiftinvariable的loss用于去监督深度的回归过程,从而使得可以更加有效使用现有数据;3
- CVPR 2023: CLIP for All Things Zero-Shot Sketch-Based Image Retrieval, Fine-Grained or Not
结构化文摘
sketchmacosui
我们使用以下6个分类标准对本文的研究选题进行分析:1.任务类型:图像检索:最常见任务,目标是检索与给定草图相似的图像。例如:[1,2,3,4,5,6,7,8,9,14,16,30,35,42,43,44,53,58,59,61,62,64,65,67,68,72,73]图像生成:相反,根据草图生成图像。例如:[11,33]目标检测:基于草图识别图像中的特定目标。例如:[13]2.输入模式:仅草图:
- SPOTTING LLMS WITH BINOCULARS: ZERO-SHOT DETECTION OF MACHINE-GENERATED TEXT
UnknownBody
LLM人工智能语言模型
本文是LLM系列文章,针对《SPOTTINGLLMSWITHBINOCULARS:ZERO-SHOTDETECTIONOFMACHINE-GENERATEDTEXT》的翻译。Binoculars定位LLMS:机器生成文本的零样本检测摘要1引言2LLM检测的历程3Binoculars:如何工作的4准确的零样本检测5可靠性6讨论与局限性摘要检测现代大型语言模型生成的文本被认为是困难的,因为LLM和人类
- 太通透了!大模型接入业务系统的最佳实践来了
机器学习社区
大模型数据库大模型模型微调prompt检索增强生成
文章目录一、背景二、业务系统接入大模型的三种方式用通俗易懂的方式讲解系列技术交流三、直接PROMPT(提示语)方式接入PROMPT的常用技巧Zero-Shot,One-Shot,Few-Shot链式思维任务分解如何在PROMPT提示语中嵌入业务知识四、通过RAG(检索增强)方式接入RAG的实现RAG的流程知识检索如何实现业务接入RAG检索的例子五、通过Fine-tuning(微调训练)接入微调训练
- Paper Reading: Metric3D Towards Zero-shot Metric 3D Prediction from A Single Image
竹底蜉蝣
PaperReading3d数码相机
Metric3DTowardsZero-shotMetric3DPredictionfromASingleImage论文链接开源项目一句话总结:作者提出了一个规范相机空间变换模块,可以将图像映射到规范空间里预测深度,然后再将深度预测图通过去规范变换恢复到真实尺度,从而达到单目真实深度预测的目的。Metric指的是真实世界中的度量值(XX米这种),不是相对的。由于相机参数不同,人们很难从单张图像中得
- CVPR2021佳作 | One-Shot都嫌多,Zero-Shot实例样本分割
计算机视觉研究院
计算机视觉机器学习人工智能深度学习编程语言
欢迎关注“计算机视觉研究院”计算机视觉研究院专栏作者:Edison_G给一个包含了未知种类多个实体的没训练过的新样本(thequeryimage),如何检测以及分割所有这些实例???长按扫描二维码关注我们一、分割回顾实例分割(InstanceSegmentation)实例分割(InstanceSegmentation)是视觉经典四个任务中相对最难的一个,它既具备语义分割(SemanticSegme
- Motion-Attentive Transition for Zero-Shot Video Object Segmentation(2020 AAAI)
行走江湖要用艺名
VOS
Motion-AttentiveTransitionforZero-ShotVideoObjectSegmentationIntroductionProposedMethodNetworkOverviewMATSA:AT:SSABARImplementationDetailsTrainingLossTraingingSettingsRuntimeExperimentsAblationStudyRe
- [2019CVPR论文笔记]Doodle to Search Practical Zero-Shot Sketch-based Image Retrieval
qq_44932092
CVPR2019图像检索图像检索CVPR2019深度学习few-shot
摘要文章地址:http[https://arxiv.org/pdf/1904.03451v1.pdf]在本文中,我们研究了基于零样本的草图图像检索(ZS-SBIR)的问题,其中人类草图被用作查询以从不可见的类别中检索照片。我们通过提出一种新颖的ZS-SBIR场景来进一步推进现有技术,该场景代表了其实际应用中的一步。新设置独特地认识到实际ZS-SBIR的两个重要但经常被忽视的挑战,(1)业余草图和照
- 【零样本草图检索】Doodle to Search: Practical Zero-Shot Sketch-based Image Retrieval
x124612
Zero-ShotSketch
Motivationssketch的数量和种类都很少,所以发展ZS-SBIR。而存在三个问题:sketch与image的domaingap;sketch的高度抽象;ZSL中从seenclass到unseenclass的语义迁移。需要合适的数据集能够包括上述挑战。Contributions1、发布新数据集QuickDraw-Extended。首先,数据集能模拟sketch与image之间的差距(比S
- Doodle to Search_ Practical Zero-Shot Sketch-Based Image Retrieval
HYY233
文献阅读
DoodletoSearch_PracticalZero-ShotSketch-BasedImageRetrievalSounakDey∗,PauRiba∗,AnjanDutta,JosepLlados´ComputerVisonCenter,UAB,Spain(西班牙,巴塞罗那大学,计算机视觉中心)Yi-ZheSongSketchX,CVSSP,UniversityofSurrey,UK(英国萨
- 105、Zero-1-to-3: Zero-shot One Image to 3D Object
C--G
#3D重建3d
简介官网 使用合成数据集来学习相对摄像机视点的控制,这允许在指定的摄像机变换下生成相同对象的新图像,用于从单个图像进行三维重建的任务。实现流程 输入图像x∈RH×W×3x\in\R^{H\timesW\times3}x∈RH×W×3,所需视点的相对摄像机旋转和平移R∈R3×3,T∈R3R\in\R^{3\times3},T\in\R^3R∈R3×3,T∈R3,合成视点图像的函数公式表示为:难点:尽
- Whisper: openAI开源准确率最高的通用语言语音识别
智慧医疗探索者
音视频处理whisper语音识别人工智能
简介我们研究了仅通过预测大量互联网音频录音的语音处理系统的能力。当扩大到68万小时的多语言和多任务监督时,生成的模型可以很好地泛化到标准基准,而且通常可以与之前的全监督结果相竞争,但在zero-shot识别设置中,无需进行任何微调。与人类相比,这些模型接近他们的准确性和鲁棒性。我们正在发布模型和推理代码,以便为进一步的鲁棒性语音处理工作提供基础。GitHub:https://github.com/
- DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning论文阅读
GCTTTTTT
知识图谱论文论文阅读知识图谱人工智能迁移学习机器学习
文章目录摘要1.问题的提出引出当前研究的不足与问题属性不平衡问题属性共现问题解决方案2.数据集和模型构建数据集传统的零样本学习范式v.s.DUET学习范式DUET模型总览属性级别对比学习==正负样本解释:==3.结果分析VIT-basedvisiontransformerencoder.消融研究消融研究解释4.结论与启示结论总结启发PLMs的潜在语义知识引入多模态,跨模态整合细粒度角度考虑原文链接
- Zero-Shot Learning
不当菜鸡的程序媛
学习记录深度学习人工智能
借用huggingface一本书里面的一段话:huggingface有一个巨大的模型库,其中一些事已经非常成熟的经典模型,这些模型即使不进行任何训练也能直接得出比较好的预测结果,也就是常说的zeroshotlearning
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>