- 凸优化学习之旅
还有你Y
最优化学习
目录标题专业名词MM算法CCP算法:代码说明SCA算法:连续松弛梯度投影算法分支定界搜索法凸问题辨别OA算法λ-representationADMM算法代码说明BCD算法BCD(BlockCoordinateDescent)代码示例与ADMM的区别总结2024年5月6日15:15:26专业名词DC问题:DifferenceofConvex。Difference理解为差,convex是凸,DC问题就
- 运筹系列35:凸优化接口cvxpy
IE06
运筹学
1.凸优化问题1.1QP问题目标函数二阶,约束一阶,称为Quadraticprogramming1.2.QCQP目标二阶,约束二阶,QuadraticalConstraintQuadraticProgramming。1.3.SOCPsecondorderconeprogram,本质上还是一个QP问题(约束条件进行平方)。1.4DCP一个问题能够由目标函数和一系列约束构造。如果问题遵从DCP规则,这
- 基于 Python 和 cvxpy 求解 SOCP 二阶锥规划问题
- Easy
优化python数学建模线性代数自动驾驶机器人
cvxpy:Python功能包,为凸优化提供方便使用的用户接口,适配多种求解器SOCP:Second-OrderConeProgramming,二阶锥规划convexoptimization-凸优化,nonlinearoptimization-非线性优化timecomplexity-时间复杂度,polynomial-time-多项式时间Euclideannorm-欧几里德范数文章目录什么是SOCP
- 机器学习 | 凸/非凸目标函数 |非凸目标函数导致求解陷入局部最优
stone_fall
图像处理与机器学习
数学中最优化问题的一般表述是求取x∗∈χx^{*}\in\chix∗∈χ,使f(x∗)=min{f(x):x∈χ}f(x^{*})=min\{f(x):x\in\chi\}f(x∗)=min{f(x):x∈χ},其中x是n维向量,χ\chiχ是x的可行域,f是χ\chiχ上的实值函数。凸优化问题是指χ\chiχ是闭合的凸集且f是χ\chiχ上的凸函数的最优化问题,这两个条件任一不满足则该问题即为非
- Task10-向前分布算法和梯度提升决策树
沫2021
1.前向分步算法前项分布算法可以解决分类问题,也可以解决回归问题。(1)Adaboost的加法模型:在Adaboost的基础上,将多个基分类器合并为一个复杂分类器,是通过计算每个基分类器的加权和。通常情况下这是一个复杂的优化问题,很难通过简单的凸优化的相关知识进行解决。而前向分步算法可以用来求解这种方式的问题,它的基本思路是:因为学习的是加法模型,如果从前向后,每一步只优化一个基函数及其系数,逐步
- 优化|复杂度分析——用于凸约束非凸优化问题的光滑化近似点增广拉格朗日算法
运筹OR帷幄
算法机器学习人工智能
1.简介对于无约束的非凸优化问题,算法复杂度的下界为Ω(1/ϵ2)\Omega(1/\epsilon^2)Ω(1/ϵ2);在目标函数光滑时,这个下界可以通过标准梯度下降算法来取到.对于带约束的非凸优化问题,这个下界依旧适用;到这里,我们自然会提出疑问:它是否也能通过某个一阶算法来取到?对此,本文[1]^{[1]}[1]作出了回答.文中介绍了一种简单的一阶算法——光滑化近似点增广拉格朗日方法(Smo
- 03 凸优化理论-凸函数
Jay Morein
优化理论与随机控制算法
03凸函数目录3.1凸函数的定义、性质(凸函数的判定)、示例3.2保凸运算3.4拟凸函数3.5对数凸函数3.3共轭函数3.6关于广义不等式的凸性3.1凸函数的定义、性质和例子(一)凸函数的定义&扩展值延伸3.1.1定义Def1凸函数的定义、几何含义定理1:仿射函数等价于既凸又凹函数。定理2(凸性由函数在直线上的性质刻画)*:凸函数的充要条件是与其定义域相交的任何直线上都是凸的。(可以将函数限制在直
- 凸优化问题:基础定义
TensorME
数学理论凸优化
“一旦将一个实际问题表述为凸优化问题,大体上意味着相应问题已经得到彻底解决,这是非凸的优化问题所不具有的性质。”——《译者序》“事实上,优化问题的分水岭不是线性与非线性,而是凸性与非凸性”——Rockafellar1什么是凸优化什么是凸优化?抛开凸优化中的种种理论和算法不谈,纯粹的看优化模型,凸优化就是:1、在最小化(最大化)的要求下,2、目标函数是一个凸函数(凹函数),3、同时约束条件所形成的可
- 深度学习|拉格朗日对偶及KKT条件推导
科研工作站
深度学习KKT对偶仿射
目录1主要内容2问题提出3对偶推导4KKT条件1主要内容在电力系统优化过程中,风光等分布式能源出力和负荷的不确定性(即源荷不确定性)形成了电力系统方向的研究热点,每个研究人员都试图通过自己的方法将研究推进的更深入一些,在理论研究的深层次上,离不开鲁棒优化,包括两阶段鲁棒优化、分布鲁棒优化算法等,鲁棒优化的基础知识是拉格朗日对偶和KKT条件,给大家推荐个课程——凌青老师的《凸优化》,该课程系统性讲解
- CVX工具包(for matlab)
夕夕夕夕嘻嘻嘻嘻
编程工具matlabcvx优化
CVX工具包(formatlab)CVX是斯坦福的教授StephenP.Bold等人开发的一个基于Matlab的凸优化工具包,能够解决诸如线性规划,二次规划,整数规划(需要license)等等优化问题,且使用非常的人性化。比如,求解最小二乘法等问题。Installation支持32/64位的Linux,MACOSX,Windows系统。可戳官方下载链接:http://cvxr.com/cvx/do
- Matlab中CVX工具箱使用
Upsame
MatlabCVXMatlab
Matlab中CVX工具箱使用CVX是一个凸优化解决工具,需要在Matlab上使用。CVX让Matlab变成一个模型语言,可以使用Matlab的标准语法完成优化问题的求解。安装下载官方安装包,解压缩到任意路径,建议和Matlab放到一起。打开Matlab,切换路径到CVX的存放路径,Matlab中运行cvx_setup命令即完成安装。cdC:\personal\cvxcvx_setupCVX支持的
- 【笔记】认识凸优化
假装有头像
笔记
凸优化凸优化是一类特殊的数学优化问题,其基本思路是凸优化的基本思路是通过利用凸性质,将优化问题转化为在凸集上定义的凸函数的最优化问题,从而能够借助凸优化的理论和算法来高效求解。凸优化问题相对于一般的优化问题更易于求解以下是凸优化的基本思路和特点:凸集:凸优化中的关键概念之一是凸集。凸集是一个具有凸性质的集合,即对于集合中的任意两点,连接它们的线段仍然在集合内部。凸优化通常涉及到在凸集上定义的优化问
- 自动驾驶轨迹规划之碰撞检测(二)
无意2121
自动驾驶轨迹规划算法游戏引擎算法自动驾驶
欢迎大家关注我的B站:偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频(bilibili.com)目录1.基于凸优化2.具身足迹3.ESDF自动驾驶轨迹规划之碰撞检测(一)-CSDN博客大家可以先阅读之前的博客1.基于凸优化以此为代表的算法则是OBCA无论是自车还是障碍物都可以表示为凸多边形,因此可以表示为多个超平面围成的空间同时,自车与障碍物的避撞表达式就可以写
- 深度学习数学知识点
搬砖成就梦想
深度学习人工智能
一、线性代数二、概率论三、微积分四、凸优化参考资料一、线性代数书籍&视频李宏毅线性代数MITLinearAlgebra知识点1)线性空间及线性变换2)矩阵的基本概念3)状态转移矩阵4)特征向量5)矩阵的相关乘法6)矩阵的QR分解7)对称矩阵、正交矩阵、正定矩阵8)矩阵的SVD分解9)矩阵的求导10)矩阵映射/投影11)矩阵的秩12)矩阵的特征值和特征空间二、概率论书籍&视频MITIntroduct
- 凸优化—常见分式规划解决方法及代码实现
兜兜转转m
通信仿真和学习算法
分式规划是凸优化中常见的问题,例如最大化能效等。这篇博客介绍了single-ratio分式规划的二种常见方法。1、Quadratictransform2、Dinkelbach'sTransform优化问题一个简单的优化问题如何使用上述二种方法来计算呢?Quadratictransform代码复现%%方法2:QuadraticTransform求解max(x/(x^2+1))s.tx>=0iter_
- 凸优化: 障碍函数法
QQ_AHAO
凸优化算法机器学习
上一节讲到了等式消除的牛顿法,这一节我们讲一般约束问题的障碍函数法。首先我们利用对数阀函数来近似替代示性函数,用来消去不等式约束。最终使得问题变为等式约束的牛顿法,然后消除法消去等式约束,再利用牛顿法进行迭代求解。例题:求解过程:以上都是笔者个人学习方法,如有不妥之处,欢迎大家批判指正,后续有时间,笔者会分享更多的凸优化学习方法给大家。
- 凸优化: 惩罚函数之内罚函数法(等式消除的newton法,一般约束问题的障碍函数法)
QQ_AHAO
凸优化其他经验分享机器学习
目录0.说明:1.等式约束的newton法:2.障碍函数法0.说明:相信不少小伙伴在学习内罚函数时会遇到不少障碍,接下来我将从结合个人学习过程,通过例题给小伙伴们讲解一下自己的见解,因为其理论知识在《凸优化》(王书宁译)介绍的很详细,所以我只介绍在例题中如何应用。由于外罚函数和内点法的不等式约束问题在网上都可以找到例题和求解方法,而且也相对较简单,所以在此我就多做赘述了。就讲述一下较难的等式消除的
- 深度卷积神经网络
sendmeasong_ying
深度学习cnn深度学习机器学习
目录1.AlexNet2.代码实现1.AlexNet(1)特征提取(2)选择核函数来计算相关性:怎么判断在高维空间里面两个点是如何相关的,如果是线性模型就是做内积。(3)凸优化问题(4)漂亮的定理丢弃法的作用就是因为模型太大了,使用它来对模型做正则。Relu相比于sigmoid梯度确实更大,Maxpooling使用的是最大值,因此输出的值比较大,梯度就比较大,训练就更加容易。输入是224*224,
- 凸优化Convex Optimization期末复习重点和考试笔记(一)凸集+凸函数
Q小Q琪
学习机器学习笔记人工智能
最近被凸优化考试整疯了,梳理出来一些复习重点和知识点笔记,希望能够帮助到有缘人!总共有四章重点,我分两个博客放哈~第一部分:凸集第二部分:凸函数以上是凸集和凸函数两章的期末复习笔记。
- 凸优化Convex Optimization期末复习重点和考试笔记(二)凸优化+对偶
Q小Q琪
学习机器学习人工智能笔记
接博客【凸优化ConvexOptimization期末复习重点和考试笔记(一)凸集+凸函数】第三部分:凸优化第四部分:对偶几种典型的凸函数以上就是凸优化和对偶函数部分,以及几种常见的凸函数。我们就考到这所以后面的没有整理,自己整理的有些地方可能有小错,希望大佬批评指正
- 【凸优化】【长链剖分】【2019冬令营模拟1.8】tree
YiPeng_Deng
题解凸优化长链剖分DP二分树形DP学习小计凸优化长链剖分树形DP预留数组空间二分
PROMBLEM给你一棵树,你需要在树上选择恰好m条点不相交的、长度至少为k的路径,使得路径所覆盖的点权和尽可能大。求最大点权和。数据保证有解。SOLUTION这是一道综合的题目,考察凸优化、长链剖分、树形DP、以及关于数组空间的优化首先引进凸优化凸优化就是关于答案可以表示成一个凸函数f(x),x是题目给出的参数,并且这个函数的斜率成下降的趋势(反过来也可以)假设我们已知的函数的最大值是f(m’)
- MATLAB中CVX工具箱解决凸优化问题的基本知识——语法、变量声明、目标函数、约束条件、cvx编程错误及解决方法
小易吾
MATLABCVX专栏matlab开发语言
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、语法二、变量声明三、目标函数四、约束条件五、函数六、cvx特有的数学运算表达式七、常见错误八、进阶阅读参考资料前言本文是在最近学习MATLABCVX工具箱解决凸优化问题时学到的一些知识点,分享出来供大家参考。进行CVX编程时,会遇到各种各样意想不到又难以解决的报错问题,如果编程过程中遇到了很多cvxbug和错误,可以阅
- 凸优化 3:最优化方法
Debroon
#凸优化算法
凸优化3:最优化方法最优化方法适用场景对比费马引理一阶优化算法梯度下降最速下降二阶优化算法牛顿法Hessian矩阵Hessian矩阵的逆Hessian矩阵和梯度的区别牛顿法和梯度下降法的区别拟牛顿法DFP、BFGS/L-BFGS数值优化算法坐标下降法SMO算法基于导数的函数优化解析优化算法/精确解无约束问题-求解驻点方程有等式约束问题-拉格朗日乘数法有等式和不等式约束问题-KKT条件基于随机数函数
- 一句话总结卷积神经网络
城市中迷途小书童
一句话总结卷积神经网络核心:一个共享权重的多层复合函数。卷积神经网络在本质上也是一个多层复合函数,但和普通神经网络不同的是它的某些权重参数是共享的,另外一个特点是它使用了池化层。训练时依然采用了反向传播算法,求解的问题不是凸优化问题。和全连接神经网络一样,卷积神经网络是一个判别模型,它既可以用于分类问题,也可以用用于回归问题,并且支持多分类问题。
- 一篇文章讲清楚凸优化问题
小树modelwiki
人工智能算法支持向量机svm机器学习
本篇文章摘录自数模百科——支持向量机模型-凸优化问题。你是一个快递公司的老板,你们公司有三种车型:小货车,中型卡车和大货车。每种车型都有它的优点和缺点。小货车一次可以运少量的货物,运费便宜,但运送大量货物就需要多次往返;大货车一次可以运很多货物,可如果货物不多,就会浪费运输成本;中型卡车则介于两者之间。现在,你有一批货物需要运送,你要选择何种组合的车型才能在满足运送需求的同时,使得运输成本最低。你
- 【数模百科】支持向量机中的线性SVM讲解以及实现办法
小树modelwiki
支持向量机算法机器学习
本篇文章来源于线性SVM-数模百科,里面有完整的关于支持向量机SVM模型的讲解,还有数据处理、应用、优缺点等重要知识点。首先,强烈建议大家把我之前的文章读一遍。一篇文章讲清楚凸优化问题-CSDN博客快速理解对偶问题-CSDN博客支持向量机SVM模型里的二元线性分类是什么-CSDN博客支持向量机SVM中的核技巧(核函数)应该怎么理解-CSDN博客读完之后,我们开始今天的内容。你在一个屋子里举行了一个
- Convex Formulation for Learning from Positive and Unlabeled Data
zealscott
UnbiasedPUlearning.该论文在之前PUlearning中使用非凸函数作为loss的基础上,对正类样本和未标记样本使用不同的凸函数loss,从而将其转为凸优化问题。结果表明,该loss(doublehingeloss)与非凸loss(ramp)精度几乎一致,但大大减少了计算量。IntrodutionBackground论文首先强调了PU问题的重要性,举了几个例子:Automaticf
- 最优化理论期末复习笔记 Part 2
hijackedbycsdn
笔记最优化凸优化
数学基础线性代数从行的角度从列的角度行列式的几何解释向量范数和矩阵范数向量范数矩阵范数的更强的性质的意义几种向量范数诱导的矩阵范数1范数诱导的矩阵范数无穷范数诱导的矩阵范数2范数诱导的矩阵范数各种范数之间的等价性向量与矩阵序列的收敛性函数的可微性与展开一维优化问题牛顿莱布尼茨公式对多维的拓展Lipschitz连续中值定理凸优化问题凸函数的判断f在D一阶可微正定矩阵f在D二阶可微无约束问题的最优性条
- Convex optimization 3.1 --- 凸优化问题 part1
expectmorata
#CVXMATHoptimization
1introduction在前面两个章节,回顾了凸集、凸函数、凸集和凸函数联系。从这章开始认识凸优化问题。其中,关于各种典型的类别的凸优化问题,主要参考了[2]。2凸优化问题2.1优化问题的标准形式2.1.1优化问题的最优解优化问题的最优解解集可能存在两种极端情况2.1.2优化问题的解集可行解如果xix_ixi满足fi(x)、hi(x)f_i(x)、h_i(x)fi(x)、hi(x),则称xix_
- 最优化理论期末复习笔记 Part 1
hijackedbycsdn
笔记最优化凸优化
数学基础线性代数从行的角度从列的角度行列式的几何解释向量范数和矩阵范数向量范数矩阵范数的更强的性质的意义几种向量范数诱导的矩阵范数1范数诱导的矩阵范数无穷范数诱导的矩阵范数2范数诱导的矩阵范数各种范数之间的等价性向量与矩阵序列的收敛性函数的可微性与展开一维优化问题牛顿莱布尼茨公式对多维的拓展Lipschitz连续中值定理凸优化问题凸函数的判断f在D一阶可微正定矩阵f在D二阶可微无约束问题的最优性条
- java解析APK
3213213333332132
javaapklinux解析APK
解析apk有两种方法
1、结合安卓提供apktool工具,用java执行cmd解析命令获取apk信息
2、利用相关jar包里的集成方法解析apk
这里只给出第二种方法,因为第一种方法在linux服务器下会出现不在控制范围之内的结果。
public class ApkUtil
{
/**
* 日志对象
*/
private static Logger
- nginx自定义ip访问N种方法
ronin47
nginx 禁止ip访问
因业务需要,禁止一部分内网访问接口, 由于前端架了F5,直接用deny或allow是不行的,这是因为直接获取的前端F5的地址。
所以开始思考有哪些主案可以实现这样的需求,目前可实施的是三种:
一:把ip段放在redis里,写一段lua
二:利用geo传递变量,写一段
- mysql timestamp类型字段的CURRENT_TIMESTAMP与ON UPDATE CURRENT_TIMESTAMP属性
dcj3sjt126com
mysql
timestamp有两个属性,分别是CURRENT_TIMESTAMP 和ON UPDATE CURRENT_TIMESTAMP两种,使用情况分别如下:
1.
CURRENT_TIMESTAMP
当要向数据库执行insert操作时,如果有个timestamp字段属性设为
CURRENT_TIMESTAMP,则无论这
- struts2+spring+hibernate分页显示
171815164
Hibernate
分页显示一直是web开发中一大烦琐的难题,传统的网页设计只在一个JSP或者ASP页面中书写所有关于数据库操作的代码,那样做分页可能简单一点,但当把网站分层开发后,分页就比较困难了,下面是我做Spring+Hibernate+Struts2项目时设计的分页代码,与大家分享交流。
1、DAO层接口的设计,在MemberDao接口中定义了如下两个方法:
public in
- 构建自己的Wrapper应用
g21121
rap
我们已经了解Wrapper的目录结构,下面可是正式利用Wrapper来包装我们自己的应用,这里假设Wrapper的安装目录为:/usr/local/wrapper。
首先,创建项目应用
&nb
- [简单]工作记录_多线程相关
53873039oycg
多线程
最近遇到多线程的问题,原来使用异步请求多个接口(n*3次请求) 方案一 使用多线程一次返回数据,最开始是使用5个线程,一个线程顺序请求3个接口,超时终止返回 缺点 测试发现必须3个接
- 调试jdk中的源码,查看jdk局部变量
程序员是怎么炼成的
jdk 源码
转自:http://www.douban.com/note/211369821/
学习jdk源码时使用--
学习java最好的办法就是看jdk源代码,面对浩瀚的jdk(光源码就有40M多,比一个大型网站的源码都多)从何入手呢,要是能单步调试跟进到jdk源码里并且能查看其中的局部变量最好了。
可惜的是sun提供的jdk并不能查看运行中的局部变量
- Oracle RAC Failover 详解
aijuans
oracle
Oracle RAC 同时具备HA(High Availiablity) 和LB(LoadBalance). 而其高可用性的基础就是Failover(故障转移). 它指集群中任何一个节点的故障都不会影响用户的使用,连接到故障节点的用户会被自动转移到健康节点,从用户感受而言, 是感觉不到这种切换。
Oracle 10g RAC 的Failover 可以分为3种:
1. Client-Si
- form表单提交数据编码方式及tomcat的接受编码方式
antonyup_2006
JavaScripttomcat浏览器互联网servlet
原帖地址:http://www.iteye.com/topic/266705
form有2中方法把数据提交给服务器,get和post,分别说下吧。
(一)get提交
1.首先说下客户端(浏览器)的form表单用get方法是如何将数据编码后提交给服务器端的吧。
对于get方法来说,都是把数据串联在请求的url后面作为参数,如:http://localhost:
- JS初学者必知的基础
百合不是茶
js函数js入门基础
JavaScript是网页的交互语言,实现网页的各种效果,
JavaScript 是世界上最流行的脚本语言。
JavaScript 是属于 web 的语言,它适用于 PC、笔记本电脑、平板电脑和移动电话。
JavaScript 被设计为向 HTML 页面增加交互性。
许多 HTML 开发者都不是程序员,但是 JavaScript 却拥有非常简单的语法。几乎每个人都有能力将小的
- iBatis的分页分析与详解
bijian1013
javaibatis
分页是操作数据库型系统常遇到的问题。分页实现方法很多,但效率的差异就很大了。iBatis是通过什么方式来实现这个分页的了。查看它的实现部分,发现返回的PaginatedList实际上是个接口,实现这个接口的是PaginatedDataList类的对象,查看PaginatedDataList类发现,每次翻页的时候最
- 精通Oracle10编程SQL(15)使用对象类型
bijian1013
oracle数据库plsql
/*
*使用对象类型
*/
--建立和使用简单对象类型
--对象类型包括对象类型规范和对象类型体两部分。
--建立和使用不包含任何方法的对象类型
CREATE OR REPLACE TYPE person_typ1 as OBJECT(
name varchar2(10),gender varchar2(4),birthdate date
);
drop type p
- 【Linux命令二】文本处理命令awk
bit1129
linux命令
awk是Linux用来进行文本处理的命令,在日常工作中,广泛应用于日志分析。awk是一门解释型编程语言,包含变量,数组,循环控制结构,条件控制结构等。它的语法采用类C语言的语法。
awk命令用来做什么?
1.awk适用于具有一定结构的文本行,对其中的列进行提取信息
2.awk可以把当前正在处理的文本行提交给Linux的其它命令处理,然后把直接结构返回给awk
3.awk实际工
- JAVA(ssh2框架)+Flex实现权限控制方案分析
白糖_
java
目前项目使用的是Struts2+Hibernate+Spring的架构模式,目前已经有一套针对SSH2的权限系统,运行良好。但是项目有了新需求:在目前系统的基础上使用Flex逐步取代JSP,在取代JSP过程中可能存在Flex与JSP并存的情况,所以权限系统需要进行修改。
【SSH2权限系统的实现机制】
权限控制分为页面和后台两块:不同类型用户的帐号分配的访问权限是不同的,用户使
- angular.forEach
boyitech
AngularJSAngularJS APIangular.forEach
angular.forEach 描述: 循环对obj对象的每个元素调用iterator, obj对象可以是一个Object或一个Array. Iterator函数调用方法: iterator(value, key, obj), 其中obj是被迭代对象,key是obj的property key或者是数组的index,value就是相应的值啦. (此函数不能够迭代继承的属性.)
- java-谷歌面试题-给定一个排序数组,如何构造一个二叉排序树
bylijinnan
二叉排序树
import java.util.LinkedList;
public class CreateBSTfromSortedArray {
/**
* 题目:给定一个排序数组,如何构造一个二叉排序树
* 递归
*/
public static void main(String[] args) {
int[] data = { 1, 2, 3, 4,
- action执行2次
Chen.H
JavaScriptjspXHTMLcssWebwork
xwork 写道 <action name="userTypeAction"
class="com.ekangcount.website.system.view.action.UserTypeAction">
<result name="ssss" type="dispatcher">
- [时空与能量]逆转时空需要消耗大量能源
comsci
能源
无论如何,人类始终都想摆脱时间和空间的限制....但是受到质量与能量关系的限制,我们人类在目前和今后很长一段时间内,都无法获得大量廉价的能源来进行时空跨越.....
在进行时空穿梭的实验中,消耗超大规模的能源是必然
- oracle的正则表达式(regular expression)详细介绍
daizj
oracle正则表达式
正则表达式是很多编程语言中都有的。可惜oracle8i、oracle9i中一直迟迟不肯加入,好在oracle10g中终于增加了期盼已久的正则表达式功能。你可以在oracle10g中使用正则表达式肆意地匹配你想匹配的任何字符串了。
正则表达式中常用到的元数据(metacharacter)如下:
^ 匹配字符串的开头位置。
$ 匹配支付传的结尾位置。
*
- 报表工具与报表性能的关系
datamachine
报表工具birt报表性能润乾报表
在选择报表工具时,性能一直是用户关心的指标,但是,报表工具的性能和整个报表系统的性能有多大关系呢?
要回答这个问题,首先要分析一下报表的处理过程包含哪些环节,哪些环节容易出现性能瓶颈,如何优化这些环节。
一、报表处理的一般过程分析
1、用户选择报表输入参数后,报表引擎会根据报表模板和输入参数来解析报表,并将数据计算和读取请求以SQL的方式发送给数据库。
2、
- 初一上学期难记忆单词背诵第一课
dcj3sjt126com
wordenglish
what 什么
your 你
name 名字
my 我的
am 是
one 一
two 二
three 三
four 四
five 五
class 班级,课
six 六
seven 七
eight 八
nince 九
ten 十
zero 零
how 怎样
old 老的
eleven 十一
twelve 十二
thirteen
- 我学过和准备学的各种技术
dcj3sjt126com
技术
语言VB https://msdn.microsoft.com/zh-cn/library/2x7h1hfk.aspxJava http://docs.oracle.com/javase/8/C# https://msdn.microsoft.com/library/vstudioPHP http://php.net/manual/en/Html
- struts2中token防止重复提交表单
蕃薯耀
重复提交表单struts2中token
struts2中token防止重复提交表单
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月12日 11:52:32 星期日
ht
- 线性查找二维数组
hao3100590
二维数组
1.算法描述
有序(行有序,列有序,且每行从左至右递增,列从上至下递增)二维数组查找,要求复杂度O(n)
2.使用到的相关知识:
结构体定义和使用,二维数组传递(http://blog.csdn.net/yzhhmhm/article/details/2045816)
3.使用数组名传递
这个的不便之处很明显,一旦确定就是不能设置列值
//使
- spring security 3中推荐使用BCrypt算法加密密码
jackyrong
Spring Security
spring security 3中推荐使用BCrypt算法加密密码了,以前使用的是md5,
Md5PasswordEncoder 和 ShaPasswordEncoder,现在不推荐了,推荐用bcrpt
Bcrpt中的salt可以是随机的,比如:
int i = 0;
while (i < 10) {
String password = "1234
- 学习编程并不难,做到以下几点即可!
lampcy
javahtml编程语言
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- 架构师之mysql----------------用group+inner join,left join ,right join 查重复数据(替代in)
nannan408
right join
1.前言。
如题。
2.代码
(1)单表查重复数据,根据a分组
SELECT m.a,m.b, INNER JOIN (select a,b,COUNT(*) AS rank FROM test.`A` A GROUP BY a HAVING rank>1 )k ON m.a=k.a
(2)多表查询 ,
使用改为le
- jQuery选择器小结 VS 节点查找(附css的一些东西)
Everyday都不同
jquerycssname选择器追加元素查找节点
最近做前端页面,频繁用到一些jQuery的选择器,所以特意来总结一下:
测试页面:
<html>
<head>
<script src="jquery-1.7.2.min.js"></script>
<script>
/*$(function() {
$(documen
- 关于EXT
tntxia
ext
ExtJS是一个很不错的Ajax框架,可以用来开发带有华丽外观的富客户端应用,使得我们的b/s应用更加具有活力及生命力。ExtJS是一个用 javascript编写,与后台技术无关的前端ajax框架。因此,可以把ExtJS用在.Net、Java、Php等各种开发语言开发的应用中。
ExtJs最开始基于YUI技术,由开发人员Jack
- 一个MIT计算机博士对数学的思考
xjnine
Math
在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。为什么要深入数学的世界?作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appe