- 凸优化学习之旅
还有你Y
最优化学习
目录标题专业名词MM算法CCP算法:代码说明SCA算法:连续松弛梯度投影算法分支定界搜索法凸问题辨别OA算法λ-representationADMM算法代码说明BCD算法BCD(BlockCoordinateDescent)代码示例与ADMM的区别总结2024年5月6日15:15:26专业名词DC问题:DifferenceofConvex。Difference理解为差,convex是凸,DC问题就
- 运筹系列35:凸优化接口cvxpy
IE06
运筹学
1.凸优化问题1.1QP问题目标函数二阶,约束一阶,称为Quadraticprogramming1.2.QCQP目标二阶,约束二阶,QuadraticalConstraintQuadraticProgramming。1.3.SOCPsecondorderconeprogram,本质上还是一个QP问题(约束条件进行平方)。1.4DCP一个问题能够由目标函数和一系列约束构造。如果问题遵从DCP规则,这
- 基于 Python 和 cvxpy 求解 SOCP 二阶锥规划问题
- Easy
优化python数学建模线性代数自动驾驶机器人
cvxpy:Python功能包,为凸优化提供方便使用的用户接口,适配多种求解器SOCP:Second-OrderConeProgramming,二阶锥规划convexoptimization-凸优化,nonlinearoptimization-非线性优化timecomplexity-时间复杂度,polynomial-time-多项式时间Euclideannorm-欧几里德范数文章目录什么是SOCP
- 机器学习 | 凸/非凸目标函数 |非凸目标函数导致求解陷入局部最优
stone_fall
图像处理与机器学习
数学中最优化问题的一般表述是求取x∗∈χx^{*}\in\chix∗∈χ,使f(x∗)=min{f(x):x∈χ}f(x^{*})=min\{f(x):x\in\chi\}f(x∗)=min{f(x):x∈χ},其中x是n维向量,χ\chiχ是x的可行域,f是χ\chiχ上的实值函数。凸优化问题是指χ\chiχ是闭合的凸集且f是χ\chiχ上的凸函数的最优化问题,这两个条件任一不满足则该问题即为非
- Task10-向前分布算法和梯度提升决策树
沫2021
1.前向分步算法前项分布算法可以解决分类问题,也可以解决回归问题。(1)Adaboost的加法模型:在Adaboost的基础上,将多个基分类器合并为一个复杂分类器,是通过计算每个基分类器的加权和。通常情况下这是一个复杂的优化问题,很难通过简单的凸优化的相关知识进行解决。而前向分步算法可以用来求解这种方式的问题,它的基本思路是:因为学习的是加法模型,如果从前向后,每一步只优化一个基函数及其系数,逐步
- 优化|复杂度分析——用于凸约束非凸优化问题的光滑化近似点增广拉格朗日算法
运筹OR帷幄
算法机器学习人工智能
1.简介对于无约束的非凸优化问题,算法复杂度的下界为Ω(1/ϵ2)\Omega(1/\epsilon^2)Ω(1/ϵ2);在目标函数光滑时,这个下界可以通过标准梯度下降算法来取到.对于带约束的非凸优化问题,这个下界依旧适用;到这里,我们自然会提出疑问:它是否也能通过某个一阶算法来取到?对此,本文[1]^{[1]}[1]作出了回答.文中介绍了一种简单的一阶算法——光滑化近似点增广拉格朗日方法(Smo
- 03 凸优化理论-凸函数
Jay Morein
优化理论与随机控制算法
03凸函数目录3.1凸函数的定义、性质(凸函数的判定)、示例3.2保凸运算3.4拟凸函数3.5对数凸函数3.3共轭函数3.6关于广义不等式的凸性3.1凸函数的定义、性质和例子(一)凸函数的定义&扩展值延伸3.1.1定义Def1凸函数的定义、几何含义定理1:仿射函数等价于既凸又凹函数。定理2(凸性由函数在直线上的性质刻画)*:凸函数的充要条件是与其定义域相交的任何直线上都是凸的。(可以将函数限制在直
- 凸优化问题:基础定义
TensorME
数学理论凸优化
“一旦将一个实际问题表述为凸优化问题,大体上意味着相应问题已经得到彻底解决,这是非凸的优化问题所不具有的性质。”——《译者序》“事实上,优化问题的分水岭不是线性与非线性,而是凸性与非凸性”——Rockafellar1什么是凸优化什么是凸优化?抛开凸优化中的种种理论和算法不谈,纯粹的看优化模型,凸优化就是:1、在最小化(最大化)的要求下,2、目标函数是一个凸函数(凹函数),3、同时约束条件所形成的可
- 深度学习|拉格朗日对偶及KKT条件推导
科研工作站
深度学习KKT对偶仿射
目录1主要内容2问题提出3对偶推导4KKT条件1主要内容在电力系统优化过程中,风光等分布式能源出力和负荷的不确定性(即源荷不确定性)形成了电力系统方向的研究热点,每个研究人员都试图通过自己的方法将研究推进的更深入一些,在理论研究的深层次上,离不开鲁棒优化,包括两阶段鲁棒优化、分布鲁棒优化算法等,鲁棒优化的基础知识是拉格朗日对偶和KKT条件,给大家推荐个课程——凌青老师的《凸优化》,该课程系统性讲解
- CVX工具包(for matlab)
夕夕夕夕嘻嘻嘻嘻
编程工具matlabcvx优化
CVX工具包(formatlab)CVX是斯坦福的教授StephenP.Bold等人开发的一个基于Matlab的凸优化工具包,能够解决诸如线性规划,二次规划,整数规划(需要license)等等优化问题,且使用非常的人性化。比如,求解最小二乘法等问题。Installation支持32/64位的Linux,MACOSX,Windows系统。可戳官方下载链接:http://cvxr.com/cvx/do
- Matlab中CVX工具箱使用
Upsame
MatlabCVXMatlab
Matlab中CVX工具箱使用CVX是一个凸优化解决工具,需要在Matlab上使用。CVX让Matlab变成一个模型语言,可以使用Matlab的标准语法完成优化问题的求解。安装下载官方安装包,解压缩到任意路径,建议和Matlab放到一起。打开Matlab,切换路径到CVX的存放路径,Matlab中运行cvx_setup命令即完成安装。cdC:\personal\cvxcvx_setupCVX支持的
- 【笔记】认识凸优化
假装有头像
笔记
凸优化凸优化是一类特殊的数学优化问题,其基本思路是凸优化的基本思路是通过利用凸性质,将优化问题转化为在凸集上定义的凸函数的最优化问题,从而能够借助凸优化的理论和算法来高效求解。凸优化问题相对于一般的优化问题更易于求解以下是凸优化的基本思路和特点:凸集:凸优化中的关键概念之一是凸集。凸集是一个具有凸性质的集合,即对于集合中的任意两点,连接它们的线段仍然在集合内部。凸优化通常涉及到在凸集上定义的优化问
- 自动驾驶轨迹规划之碰撞检测(二)
无意2121
自动驾驶轨迹规划算法游戏引擎算法自动驾驶
欢迎大家关注我的B站:偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频(bilibili.com)目录1.基于凸优化2.具身足迹3.ESDF自动驾驶轨迹规划之碰撞检测(一)-CSDN博客大家可以先阅读之前的博客1.基于凸优化以此为代表的算法则是OBCA无论是自车还是障碍物都可以表示为凸多边形,因此可以表示为多个超平面围成的空间同时,自车与障碍物的避撞表达式就可以写
- 深度学习数学知识点
搬砖成就梦想
深度学习人工智能
一、线性代数二、概率论三、微积分四、凸优化参考资料一、线性代数书籍&视频李宏毅线性代数MITLinearAlgebra知识点1)线性空间及线性变换2)矩阵的基本概念3)状态转移矩阵4)特征向量5)矩阵的相关乘法6)矩阵的QR分解7)对称矩阵、正交矩阵、正定矩阵8)矩阵的SVD分解9)矩阵的求导10)矩阵映射/投影11)矩阵的秩12)矩阵的特征值和特征空间二、概率论书籍&视频MITIntroduct
- 凸优化—常见分式规划解决方法及代码实现
兜兜转转m
通信仿真和学习算法
分式规划是凸优化中常见的问题,例如最大化能效等。这篇博客介绍了single-ratio分式规划的二种常见方法。1、Quadratictransform2、Dinkelbach'sTransform优化问题一个简单的优化问题如何使用上述二种方法来计算呢?Quadratictransform代码复现%%方法2:QuadraticTransform求解max(x/(x^2+1))s.tx>=0iter_
- 凸优化: 障碍函数法
QQ_AHAO
凸优化算法机器学习
上一节讲到了等式消除的牛顿法,这一节我们讲一般约束问题的障碍函数法。首先我们利用对数阀函数来近似替代示性函数,用来消去不等式约束。最终使得问题变为等式约束的牛顿法,然后消除法消去等式约束,再利用牛顿法进行迭代求解。例题:求解过程:以上都是笔者个人学习方法,如有不妥之处,欢迎大家批判指正,后续有时间,笔者会分享更多的凸优化学习方法给大家。
- 凸优化: 惩罚函数之内罚函数法(等式消除的newton法,一般约束问题的障碍函数法)
QQ_AHAO
凸优化其他经验分享机器学习
目录0.说明:1.等式约束的newton法:2.障碍函数法0.说明:相信不少小伙伴在学习内罚函数时会遇到不少障碍,接下来我将从结合个人学习过程,通过例题给小伙伴们讲解一下自己的见解,因为其理论知识在《凸优化》(王书宁译)介绍的很详细,所以我只介绍在例题中如何应用。由于外罚函数和内点法的不等式约束问题在网上都可以找到例题和求解方法,而且也相对较简单,所以在此我就多做赘述了。就讲述一下较难的等式消除的
- 深度卷积神经网络
sendmeasong_ying
深度学习cnn深度学习机器学习
目录1.AlexNet2.代码实现1.AlexNet(1)特征提取(2)选择核函数来计算相关性:怎么判断在高维空间里面两个点是如何相关的,如果是线性模型就是做内积。(3)凸优化问题(4)漂亮的定理丢弃法的作用就是因为模型太大了,使用它来对模型做正则。Relu相比于sigmoid梯度确实更大,Maxpooling使用的是最大值,因此输出的值比较大,梯度就比较大,训练就更加容易。输入是224*224,
- 凸优化Convex Optimization期末复习重点和考试笔记(一)凸集+凸函数
Q小Q琪
学习机器学习笔记人工智能
最近被凸优化考试整疯了,梳理出来一些复习重点和知识点笔记,希望能够帮助到有缘人!总共有四章重点,我分两个博客放哈~第一部分:凸集第二部分:凸函数以上是凸集和凸函数两章的期末复习笔记。
- 凸优化Convex Optimization期末复习重点和考试笔记(二)凸优化+对偶
Q小Q琪
学习机器学习人工智能笔记
接博客【凸优化ConvexOptimization期末复习重点和考试笔记(一)凸集+凸函数】第三部分:凸优化第四部分:对偶几种典型的凸函数以上就是凸优化和对偶函数部分,以及几种常见的凸函数。我们就考到这所以后面的没有整理,自己整理的有些地方可能有小错,希望大佬批评指正
- 【凸优化】【长链剖分】【2019冬令营模拟1.8】tree
YiPeng_Deng
题解凸优化长链剖分DP二分树形DP学习小计凸优化长链剖分树形DP预留数组空间二分
PROMBLEM给你一棵树,你需要在树上选择恰好m条点不相交的、长度至少为k的路径,使得路径所覆盖的点权和尽可能大。求最大点权和。数据保证有解。SOLUTION这是一道综合的题目,考察凸优化、长链剖分、树形DP、以及关于数组空间的优化首先引进凸优化凸优化就是关于答案可以表示成一个凸函数f(x),x是题目给出的参数,并且这个函数的斜率成下降的趋势(反过来也可以)假设我们已知的函数的最大值是f(m’)
- MATLAB中CVX工具箱解决凸优化问题的基本知识——语法、变量声明、目标函数、约束条件、cvx编程错误及解决方法
小易吾
MATLABCVX专栏matlab开发语言
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、语法二、变量声明三、目标函数四、约束条件五、函数六、cvx特有的数学运算表达式七、常见错误八、进阶阅读参考资料前言本文是在最近学习MATLABCVX工具箱解决凸优化问题时学到的一些知识点,分享出来供大家参考。进行CVX编程时,会遇到各种各样意想不到又难以解决的报错问题,如果编程过程中遇到了很多cvxbug和错误,可以阅
- 凸优化 3:最优化方法
Debroon
#凸优化算法
凸优化3:最优化方法最优化方法适用场景对比费马引理一阶优化算法梯度下降最速下降二阶优化算法牛顿法Hessian矩阵Hessian矩阵的逆Hessian矩阵和梯度的区别牛顿法和梯度下降法的区别拟牛顿法DFP、BFGS/L-BFGS数值优化算法坐标下降法SMO算法基于导数的函数优化解析优化算法/精确解无约束问题-求解驻点方程有等式约束问题-拉格朗日乘数法有等式和不等式约束问题-KKT条件基于随机数函数
- 一句话总结卷积神经网络
城市中迷途小书童
一句话总结卷积神经网络核心:一个共享权重的多层复合函数。卷积神经网络在本质上也是一个多层复合函数,但和普通神经网络不同的是它的某些权重参数是共享的,另外一个特点是它使用了池化层。训练时依然采用了反向传播算法,求解的问题不是凸优化问题。和全连接神经网络一样,卷积神经网络是一个判别模型,它既可以用于分类问题,也可以用用于回归问题,并且支持多分类问题。
- 一篇文章讲清楚凸优化问题
小树modelwiki
人工智能算法支持向量机svm机器学习
本篇文章摘录自数模百科——支持向量机模型-凸优化问题。你是一个快递公司的老板,你们公司有三种车型:小货车,中型卡车和大货车。每种车型都有它的优点和缺点。小货车一次可以运少量的货物,运费便宜,但运送大量货物就需要多次往返;大货车一次可以运很多货物,可如果货物不多,就会浪费运输成本;中型卡车则介于两者之间。现在,你有一批货物需要运送,你要选择何种组合的车型才能在满足运送需求的同时,使得运输成本最低。你
- 【数模百科】支持向量机中的线性SVM讲解以及实现办法
小树modelwiki
支持向量机算法机器学习
本篇文章来源于线性SVM-数模百科,里面有完整的关于支持向量机SVM模型的讲解,还有数据处理、应用、优缺点等重要知识点。首先,强烈建议大家把我之前的文章读一遍。一篇文章讲清楚凸优化问题-CSDN博客快速理解对偶问题-CSDN博客支持向量机SVM模型里的二元线性分类是什么-CSDN博客支持向量机SVM中的核技巧(核函数)应该怎么理解-CSDN博客读完之后,我们开始今天的内容。你在一个屋子里举行了一个
- Convex Formulation for Learning from Positive and Unlabeled Data
zealscott
UnbiasedPUlearning.该论文在之前PUlearning中使用非凸函数作为loss的基础上,对正类样本和未标记样本使用不同的凸函数loss,从而将其转为凸优化问题。结果表明,该loss(doublehingeloss)与非凸loss(ramp)精度几乎一致,但大大减少了计算量。IntrodutionBackground论文首先强调了PU问题的重要性,举了几个例子:Automaticf
- 最优化理论期末复习笔记 Part 2
hijackedbycsdn
笔记最优化凸优化
数学基础线性代数从行的角度从列的角度行列式的几何解释向量范数和矩阵范数向量范数矩阵范数的更强的性质的意义几种向量范数诱导的矩阵范数1范数诱导的矩阵范数无穷范数诱导的矩阵范数2范数诱导的矩阵范数各种范数之间的等价性向量与矩阵序列的收敛性函数的可微性与展开一维优化问题牛顿莱布尼茨公式对多维的拓展Lipschitz连续中值定理凸优化问题凸函数的判断f在D一阶可微正定矩阵f在D二阶可微无约束问题的最优性条
- Convex optimization 3.1 --- 凸优化问题 part1
expectmorata
#CVXMATHoptimization
1introduction在前面两个章节,回顾了凸集、凸函数、凸集和凸函数联系。从这章开始认识凸优化问题。其中,关于各种典型的类别的凸优化问题,主要参考了[2]。2凸优化问题2.1优化问题的标准形式2.1.1优化问题的最优解优化问题的最优解解集可能存在两种极端情况2.1.2优化问题的解集可行解如果xix_ixi满足fi(x)、hi(x)f_i(x)、h_i(x)fi(x)、hi(x),则称xix_
- 最优化理论期末复习笔记 Part 1
hijackedbycsdn
笔记最优化凸优化
数学基础线性代数从行的角度从列的角度行列式的几何解释向量范数和矩阵范数向量范数矩阵范数的更强的性质的意义几种向量范数诱导的矩阵范数1范数诱导的矩阵范数无穷范数诱导的矩阵范数2范数诱导的矩阵范数各种范数之间的等价性向量与矩阵序列的收敛性函数的可微性与展开一维优化问题牛顿莱布尼茨公式对多维的拓展Lipschitz连续中值定理凸优化问题凸函数的判断f在D一阶可微正定矩阵f在D二阶可微无约束问题的最优性条
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理