转自:
http://www.cnblogs.com/linyujun/p/5194184.html
先来引入求余概念
(a + b) % p = (a%p + b%p) %p (对)
(a - b) % p = (a%p - b%p) %p (对)
(a * b) % p = (a%p * b%p) %p (对)
(a / b) % p = (a%p / b%p) %p (错)
为什么除法错的
证明是对的难,证明错的只要举一个反例
(100/50)%20 = 2 ≠ (100%20) / (50%20) %20 = 0
对于一些题目,我们必须在中间过程中进行求余,否则数字太大,电脑存不下,那如果这个算式中出现除法,我们是不是对这个算式就无法计算了呢?
答案当然是 NO (>o<)
这时就需要逆元了
我们知道
如果
a*x = 1
那么x是a的倒数,x = 1/a
但是a如果不是1,那么x就是小数
那数论中,大部分情况都有求余,所以现在问题变了
a*x = 1 (mod p)
那么x一定等于1/a吗
不一定
所以这时候,我们就把x看成a的倒数,只不过加了一个求余条件,所以x叫做 a关于p的逆元
比如2 * 3 % 5 = 1,那么3就是2关于5的逆元,或者说2和3关于5互为逆元
这里3的效果是不是跟1/2的效果一样,所以才叫数论倒数
a的逆元,我们用inv(a)来表示
那么(a / b) % p = (a * inv(a) ) % p = (a % p * inv(a) % p) % p
(这里加一点自己写的,关于为什么(a / b) % p = (a * inv(a) ) % p 的一般说明)
假设b存在乘法逆元,即与m互质(充要条件)。设c是b的逆元,即b∗c≡1(modm),那么有a/b=(a/b)∗1=(a/b)∗b∗c=a∗c(modm)
即,除以一个数取模等于乘以这个数的逆元取模。
这样就把除法,完全转换为乘法了 (。・ω・),乘法超容易
正篇开始
逆元怎么求
(忘了说,a和p互质,a才有关于p的逆元)
方法一:
费马曾经说过:不想当数学家的数学家不是好数学家(( ̄▽ ̄)~*我随便说的,别当真)
费马小定理
a^(p-1) ≡1 (mod p)
两边同除以a
a^(p-2) ≡1/a (mod p)
什么(,,• ₃ •,,),这可是数论,还敢写1/a
应该写a^(p-2) ≡ inv(a) (mod p)
所以inv(a) = a^(p-2) (mod p)
这个用快速幂求一下,复杂度O(logn)(ง •̀_•́)ง
1 LL pow_mod(LL a, LL b, LL p){//a的b次方求余p
2 LL ret = 1;
3 while(b){
4 if(b & 1) ret = (ret * a) % p;
5 a = (a * a) % p;
6 b >>= 1;
7 }
8 return ret;
9 }
10 LL Fermat(LL a, LL p){//费马求a关于b的逆元
11 return pow_mod(a, p-2, p);
12 }
方法二:
要用扩展欧几里德算法
还记得扩展欧几里德吗?(不记得的话,欧几里得会伤心的(╭ ̄3 ̄)╭♡)
a*x + b*y = 1
如果ab互质,有解
这个解的x就是a关于b的逆元
y就是b关于a的逆元
为什么呢?
你看,两边同时求余b
a*x % b + b*y % b = 1 % b
a*x % b = 1 % b
a*x = 1 (mod b)
你看你看,出现了!!!(/≥▽≤/)
所以x是a关于b的逆元
反之可证明y
附上代码:
1 #include
2 typedef long long LL;
3 void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d){
4 if (!b) {d = a, x = 1, y = 0;}
5 else{
6 ex_gcd(b, a % b, y, x, d);
7 y -= x * (a / b);
8 }
9 }
10 LL inv(LL t, LL p){//如果不存在,返回-1
11 LL d, x, y;
12 ex_gcd(t, p, x, y, d);
13 return d == 1 ? (x % p + p) % p : -1;
14 }
15 int main(){
16 LL a, p;
17 while(~scanf("%lld%lld", &a, &p)){
18 printf("%lld\n", inv(a, p));
19 }
20 }
方法三:
当p是个质数的时候有
inv(a) = (p - p / a) * inv(p % a) % p
这为啥是对的咩?
证明不想看的孩子可以跳过。。。( ̄0  ̄)
证明:
设x = p % a,y = p / a
于是有 x + y * a = p
(x + y * a) % p = 0
移项得 x % p = (-y) * a % p
x * inv(a) % p = (-y) % p
inv(a) = (p - y) * inv(x) % p
于是 inv(a) = (p - p / a) * inv(p % a) % p
然后一直递归到1为止,因为1的逆元就是1
代码:
1 #include
2 typedef long long LL;
3 LL inv(LL t, LL p) {//求t关于p的逆元,注意:t要小于p,最好传参前先把t%p一下
4 return t == 1 ? 1 : (p - p / t) * inv(p % t, p) % p;
5 }
6 int main(){
7 LL a, p;
8 while(~scanf("%lld%lld", &a, &p)){
9 printf("%lld\n", inv(a%p, p));
10 }
11 }
这个方法不限于求单个逆元,比前两个好,它可以在O(n)的复杂度内算出n个数的逆元
递归就是上面的写法,加一个记忆性递归,就可以了
递推这么写
1 #include
2 const int N = 200000 + 5;
3 const int MOD = (int)1e9 + 7;
4 int inv[N];
5 int init(){
6 inv[1] = 1;
7 for(int i = 2; i < N; i ++){
8 inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD;
9 }
10 }
11 int main(){
12 init();
13 }
又学到新知识了o(*≧▽≦)ツ好开心
逆元详解转自于:
http://blog.csdn.net/acdreamers/article/details/8220787