- [插电式混合动力车辆][交替方向乘子法(ADMM)结合CVX]插电式混合动力车辆的能源管理:基于凸优化算法用于模型预测控制MPC研究(Matlab代码实现)
程序辅导帮
算法matlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述2运行结果3参考文献4Matlab代码、数据、文章⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时
- AI大模型从0到1记录学习 大模型技术之机器学习 day27-day60
Gsen2819
算法大模型人工智能人工智能学习机器学习
机器学习概述机器学习(MachineLearning,ML)主要研究计算机系统对于特定任务的性能,逐步进行改善的算法和统计模型。通过输入海量训练数据对模型进行训练,使模型掌握数据所蕴含的潜在规律,进而对新输入的数据进行准确的分类或预测。机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸优化、算法复杂度理论等多门学科。人工智能、机器学习与深度学习人工智能(AI)是计算机科学的一个广泛领域,
- 凸优化:驯服复杂世界的“山谷寻宝术”
科技林总
DeepSeek学AI人工智能
想象你被蒙上双眼,置身于一片广袤而陌生的山地。你的任务只有一个:找到最低的那个山谷。地形可能极其复杂——有无数的山峰、深谷、沟壑、平原。有些山谷是陷阱(局部最低点),而真正的宝藏(全局最低点)只有一个。如何在信息有限、地形未知的情况下,高效、可靠地找到这个绝对的最低点?这就是**凸优化(ConvexOptimization)**要解决的终极挑战。它不是普通的优化,而是一门将复杂世界转化为“友好地形
- 詹森不等式(Jensen’s Inequality)——EM算法的基础
phoenix@Capricornus
模式识别中的数学问题机器学习
詹森不等式(Jensen’sInequality)是数学中一个非常重要的不等式,广泛应用于概率论、统计学、凸优化、信息论等领域。它基于凸函数和凹函数的性质。一、基本定义设函数fff是定义在区间III上的凸函数(convexfunction),且随机变量XXX的取值落在III内,期望存在,则有:E[f(X)]⩾f(E[X]){E}[f(X)]\geqslantf({E}[X])E[f(X)]⩾f(E
- 【神经网络与深度学习】通俗易懂的介绍非凸优化问题、梯度消失、梯度爆炸、模型的收敛、模型的发散
如果树上有叶子
神经网络与深度学习深度学习神经网络人工智能
引言深度学习近年来取得了突破性的进展,并在多个领域展现出惊人的性能。然而,神经网络的训练过程并不总是顺利的,优化过程中可能会遇到各种挑战,如非凸优化问题、梯度消失、梯度爆炸、模型收敛和模型发散。这些问题直接影响着模型的稳定性和最终性能,因此理解它们对于深度学习的研究和应用至关重要。本文将深入探讨这些优化问题的本质及其应对策略,帮助你更好地掌握深度学习模型的训练过程,并提高模型的表现。深度学习中的优
- 强化学习系统学习路径与实践方法
豆芽819
tip学习人工智能机器学习深度学习强化学习
一、学习路径规划1.基础巩固阶段(1-2个月)必读教材:《ReinforcementLearning:AnIntroduction》(Sutton&Barto)第1-6章重点掌握:马尔可夫决策过程(MDP)、贝尔曼方程、动态规划(DP)、蒙特卡洛(MC)、时序差分(TD)算法。数学基础:概率论(期望、方差、条件概率)线性代数(矩阵运算、特征值)优化理论(梯度下降、凸优化)补充资源:MIT线性代数课
- 最优化方法(3):线性规划基本理论
♚放晴♛~
算法
系列笔记是本人在上最优化方法时整理的,参考书籍为经典的NumericalOptimization(SecondEdition)。笔记主要分为0~5共六个部分,包括优化基础、线搜索、带约束优化基础、线性规划、对偶理论、带约束凸优化算法,以及一些零散的部分。这里是第三部分,也就是线性规划基本理论。线性规划基本理论线性规划标准形式与转化线性规划问题有着如下形式:mincTxs.t.aiTx≤bi,i=
- 《Sklearn 机器学习模型--分类模型》--支持向量机(Support Vector Machine, SVM)
非门由也
机器学习数据分析支持向量机机器学习sklearn
支持向量机(SupportVectorMachine,SVM)是一种基于间隔最大化原理的分类模型,其核心在于构建最优超平面以区分不同类别,并具有处理高维数据的优势。是否高斯分布/复杂边界多项式关系输入训练数据数据标准化处理数据是否线性可分?选择线性核函数选择非线性核函数数据特征类型?使用RBF核使用多项式核构建SVM目标函数求解凸优化问题:最大化间隔得到支持向量与超平面分类新样本输出预测类别核心
- 深度学习 常见优化器
Humingway
深度学习人工智能
一、基础优化器随机梯度下降(SGD)•核心:∇θJ(θ)=η*∇θJ(θ)•特点:学习率固定,收敛路径震荡大•适用场景:简单凸优化问题•改进方向:动量加速二、动量系优化器2.SGDwithMomentum•公式:v_t=γv_{t-1}+η∇θJ(θ)•效果:平滑梯度更新,加速收敛•经典参数:γ=0.9(多数场景推荐)三、自适应学习率家族3.Adagrad•创新:∇θJ(θ)_t=∇θJ(θ)/(
- 支持向量机 SVM 简要介绍
_夜空的繁星_
机器学习svm支持向量机拉格朗日对偶机器学习
那些我从来没有理解过的概念(1)下面是我在学习过程中遇到的对我很难理解的概念和我抄下来的笔记主要资料来源:《统计学习方法》,维基百科拉格朗日对偶问题是什么假设f(x),ci(x),hj(x)是定义在Rn上的连续可微函数,考虑以下最优化问题:$$\min_{x\inR^n}{f(x)}\c_i(x)\leq0,i=1,2,\dots,k\h_j(x)=0,j=1,2,\dots,l$$是一个凸优化问
- 支持向量机SVM原理详解
handsomeboysk
支持向量机机器学习人工智能
SVM原理详解1、超平面2、SVM原理1.问题定义2.分类决策得到约束条件3.最大化间隔4.优化目标3、凸优化问题1.原始优化问题优化目标约束条件2.拉格朗日乘子法3.拉格朗日函数分析4.求解对www和bbb的极值5.构造对偶问题对偶问题的约束条件:6、通过支持向量求解bbb支持向量的条件7.对偶问题的解法4、非线性如何划分1.非线性数据问题2.核技巧的核心思想3.常见的核函数1.线性核(Line
- Python-玩转数据-凸优化
人猿宇宙
python数据挖掘人工智能
一、说明最优化问题目前在机器学习,数据挖掘等领域应用非常广泛,因为机器学习简单来说,主要做的就是优化问题,先初始化一下权重参数,然后利用优化方法来优化这个权重,直到准确率不再是上升,迭代停止,那到底什么是最优化问题呢?比如你要从上海去北京,你可以选择搭飞机,或者火车,动车,但只给你500块钱,要求你以最快的时间到达,其中到达的时间就是优化的目标,500块钱是限制条件,选择动车,火车,或者什么火车都
- 凸优化学习
qiaoxinyu10623
凸优化1024程序员节
认为学习凸优化理论比较合适的路径是:学习/复习线性代数和(少量)高等数学的知识。实际上,凸优化理论综合使用了线性代数和微积分的相关知识,比如方向导数,雅克比矩阵,海森矩阵,KKT条件等。这里强烈推荐MIT公开课《线性代数》,GilbertStrang教授主讲,完全不是照本宣科,而是注重几何解释,非常具有启发性,学完之后,你会对线性代数有全新的认识。学习视频:-UP主汉语配音-【线性代数的本质】合集
- 凸优化学习之旅
还有你Y
最优化学习
目录标题专业名词MM算法CCP算法:代码说明SCA算法:连续松弛梯度投影算法分支定界搜索法凸问题辨别OA算法λ-representationADMM算法代码说明BCD算法BCD(BlockCoordinateDescent)代码示例与ADMM的区别总结2024年5月6日15:15:26专业名词DC问题:DifferenceofConvex。Difference理解为差,convex是凸,DC问题就
- 运筹系列35:凸优化接口cvxpy
IE06
运筹学
1.凸优化问题1.1QP问题目标函数二阶,约束一阶,称为Quadraticprogramming1.2.QCQP目标二阶,约束二阶,QuadraticalConstraintQuadraticProgramming。1.3.SOCPsecondorderconeprogram,本质上还是一个QP问题(约束条件进行平方)。1.4DCP一个问题能够由目标函数和一系列约束构造。如果问题遵从DCP规则,这
- 基于 Python 和 cvxpy 求解 SOCP 二阶锥规划问题
- Easy
优化python数学建模线性代数自动驾驶机器人
cvxpy:Python功能包,为凸优化提供方便使用的用户接口,适配多种求解器SOCP:Second-OrderConeProgramming,二阶锥规划convexoptimization-凸优化,nonlinearoptimization-非线性优化timecomplexity-时间复杂度,polynomial-time-多项式时间Euclideannorm-欧几里德范数文章目录什么是SOCP
- 机器学习 | 凸/非凸目标函数 |非凸目标函数导致求解陷入局部最优
stone_fall
图像处理与机器学习
数学中最优化问题的一般表述是求取x∗∈χx^{*}\in\chix∗∈χ,使f(x∗)=min{f(x):x∈χ}f(x^{*})=min\{f(x):x\in\chi\}f(x∗)=min{f(x):x∈χ},其中x是n维向量,χ\chiχ是x的可行域,f是χ\chiχ上的实值函数。凸优化问题是指χ\chiχ是闭合的凸集且f是χ\chiχ上的凸函数的最优化问题,这两个条件任一不满足则该问题即为非
- Task10-向前分布算法和梯度提升决策树
沫2021
1.前向分步算法前项分布算法可以解决分类问题,也可以解决回归问题。(1)Adaboost的加法模型:在Adaboost的基础上,将多个基分类器合并为一个复杂分类器,是通过计算每个基分类器的加权和。通常情况下这是一个复杂的优化问题,很难通过简单的凸优化的相关知识进行解决。而前向分步算法可以用来求解这种方式的问题,它的基本思路是:因为学习的是加法模型,如果从前向后,每一步只优化一个基函数及其系数,逐步
- 优化|复杂度分析——用于凸约束非凸优化问题的光滑化近似点增广拉格朗日算法
运筹OR帷幄
算法机器学习人工智能
1.简介对于无约束的非凸优化问题,算法复杂度的下界为Ω(1/ϵ2)\Omega(1/\epsilon^2)Ω(1/ϵ2);在目标函数光滑时,这个下界可以通过标准梯度下降算法来取到.对于带约束的非凸优化问题,这个下界依旧适用;到这里,我们自然会提出疑问:它是否也能通过某个一阶算法来取到?对此,本文[1]^{[1]}[1]作出了回答.文中介绍了一种简单的一阶算法——光滑化近似点增广拉格朗日方法(Smo
- 03 凸优化理论-凸函数
Jay Morein
优化理论与随机控制算法
03凸函数目录3.1凸函数的定义、性质(凸函数的判定)、示例3.2保凸运算3.4拟凸函数3.5对数凸函数3.3共轭函数3.6关于广义不等式的凸性3.1凸函数的定义、性质和例子(一)凸函数的定义&扩展值延伸3.1.1定义Def1凸函数的定义、几何含义定理1:仿射函数等价于既凸又凹函数。定理2(凸性由函数在直线上的性质刻画)*:凸函数的充要条件是与其定义域相交的任何直线上都是凸的。(可以将函数限制在直
- 凸优化问题:基础定义
TensorME
数学理论凸优化
“一旦将一个实际问题表述为凸优化问题,大体上意味着相应问题已经得到彻底解决,这是非凸的优化问题所不具有的性质。”——《译者序》“事实上,优化问题的分水岭不是线性与非线性,而是凸性与非凸性”——Rockafellar1什么是凸优化什么是凸优化?抛开凸优化中的种种理论和算法不谈,纯粹的看优化模型,凸优化就是:1、在最小化(最大化)的要求下,2、目标函数是一个凸函数(凹函数),3、同时约束条件所形成的可
- 深度学习|拉格朗日对偶及KKT条件推导
科研工作站
深度学习KKT对偶仿射
目录1主要内容2问题提出3对偶推导4KKT条件1主要内容在电力系统优化过程中,风光等分布式能源出力和负荷的不确定性(即源荷不确定性)形成了电力系统方向的研究热点,每个研究人员都试图通过自己的方法将研究推进的更深入一些,在理论研究的深层次上,离不开鲁棒优化,包括两阶段鲁棒优化、分布鲁棒优化算法等,鲁棒优化的基础知识是拉格朗日对偶和KKT条件,给大家推荐个课程——凌青老师的《凸优化》,该课程系统性讲解
- CVX工具包(for matlab)
夕夕夕夕嘻嘻嘻嘻
编程工具matlabcvx优化
CVX工具包(formatlab)CVX是斯坦福的教授StephenP.Bold等人开发的一个基于Matlab的凸优化工具包,能够解决诸如线性规划,二次规划,整数规划(需要license)等等优化问题,且使用非常的人性化。比如,求解最小二乘法等问题。Installation支持32/64位的Linux,MACOSX,Windows系统。可戳官方下载链接:http://cvxr.com/cvx/do
- Matlab中CVX工具箱使用
Upsame
MatlabCVXMatlab
Matlab中CVX工具箱使用CVX是一个凸优化解决工具,需要在Matlab上使用。CVX让Matlab变成一个模型语言,可以使用Matlab的标准语法完成优化问题的求解。安装下载官方安装包,解压缩到任意路径,建议和Matlab放到一起。打开Matlab,切换路径到CVX的存放路径,Matlab中运行cvx_setup命令即完成安装。cdC:\personal\cvxcvx_setupCVX支持的
- 【笔记】认识凸优化
假装有头像
笔记
凸优化凸优化是一类特殊的数学优化问题,其基本思路是凸优化的基本思路是通过利用凸性质,将优化问题转化为在凸集上定义的凸函数的最优化问题,从而能够借助凸优化的理论和算法来高效求解。凸优化问题相对于一般的优化问题更易于求解以下是凸优化的基本思路和特点:凸集:凸优化中的关键概念之一是凸集。凸集是一个具有凸性质的集合,即对于集合中的任意两点,连接它们的线段仍然在集合内部。凸优化通常涉及到在凸集上定义的优化问
- 自动驾驶轨迹规划之碰撞检测(二)
无意2121
自动驾驶轨迹规划算法游戏引擎算法自动驾驶
欢迎大家关注我的B站:偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频(bilibili.com)目录1.基于凸优化2.具身足迹3.ESDF自动驾驶轨迹规划之碰撞检测(一)-CSDN博客大家可以先阅读之前的博客1.基于凸优化以此为代表的算法则是OBCA无论是自车还是障碍物都可以表示为凸多边形,因此可以表示为多个超平面围成的空间同时,自车与障碍物的避撞表达式就可以写
- 深度学习数学知识点
搬砖成就梦想
深度学习人工智能
一、线性代数二、概率论三、微积分四、凸优化参考资料一、线性代数书籍&视频李宏毅线性代数MITLinearAlgebra知识点1)线性空间及线性变换2)矩阵的基本概念3)状态转移矩阵4)特征向量5)矩阵的相关乘法6)矩阵的QR分解7)对称矩阵、正交矩阵、正定矩阵8)矩阵的SVD分解9)矩阵的求导10)矩阵映射/投影11)矩阵的秩12)矩阵的特征值和特征空间二、概率论书籍&视频MITIntroduct
- 凸优化—常见分式规划解决方法及代码实现
兜兜转转m
通信仿真和学习算法
分式规划是凸优化中常见的问题,例如最大化能效等。这篇博客介绍了single-ratio分式规划的二种常见方法。1、Quadratictransform2、Dinkelbach'sTransform优化问题一个简单的优化问题如何使用上述二种方法来计算呢?Quadratictransform代码复现%%方法2:QuadraticTransform求解max(x/(x^2+1))s.tx>=0iter_
- 凸优化: 障碍函数法
QQ_AHAO
凸优化算法机器学习
上一节讲到了等式消除的牛顿法,这一节我们讲一般约束问题的障碍函数法。首先我们利用对数阀函数来近似替代示性函数,用来消去不等式约束。最终使得问题变为等式约束的牛顿法,然后消除法消去等式约束,再利用牛顿法进行迭代求解。例题:求解过程:以上都是笔者个人学习方法,如有不妥之处,欢迎大家批判指正,后续有时间,笔者会分享更多的凸优化学习方法给大家。
- 凸优化: 惩罚函数之内罚函数法(等式消除的newton法,一般约束问题的障碍函数法)
QQ_AHAO
凸优化其他经验分享机器学习
目录0.说明:1.等式约束的newton法:2.障碍函数法0.说明:相信不少小伙伴在学习内罚函数时会遇到不少障碍,接下来我将从结合个人学习过程,通过例题给小伙伴们讲解一下自己的见解,因为其理论知识在《凸优化》(王书宁译)介绍的很详细,所以我只介绍在例题中如何应用。由于外罚函数和内点法的不等式约束问题在网上都可以找到例题和求解方法,而且也相对较简单,所以在此我就多做赘述了。就讲述一下较难的等式消除的
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro