- YOLO11 目标检测从安装到实战
前言YOLO(YouOnlyLookOnce)系列是目标检测领域的经典算法,凭借速度快、精度高的特点被广泛应用。最新的YOLO11在模型结构和性能上进一步优化,本文将从环境搭建到实战应用,详细讲解YOLO11的使用方法,适合新手快速上手。一、环境准备1.系统要求操作系统:Windows10/11、Ubuntu20.04+、欧拉系统等硬件:CPU可运行,GPU(NVIDIA)可加速(推荐,需支持CU
- 揭秘华为欧拉:不只是操作系统,更是云时代的技能认证体系
揭秘华为欧拉:不只是操作系统,更是云时代的技能认证体系作为一名深耕IT培训领域的博主,今天带大家客观认识“华为欧拉”——这个在云计算领域频频出现的名词。一、华为欧拉究竟是什么?严格来说,“华为欧拉”核心包含两部分1.openEuler操作系统:一个由华为支持的企业级开源Linux操作系统发行版,专为云计算、云原生平台等场景设计优化。2.华为openEuler认证体系(HCIA/HCIP/HCIE-
- 【数论 排序 滑动窗口】1040. 移动石子直到连续 II|2455
软件架构师何志丹
#困难算法题c++力扣算法排序滑动窗口数论石子
本文涉及知识点排序质数、最大公约数、菲蜀定理C++算法:滑动窗口总结LeetCode1040.移动石子直到连续II在一个长度无限的数轴上,第i颗石子的位置为stones[i]。如果一颗石子的位置最小/最大,那么该石子被称作端点石子。每个回合,你可以将一颗端点石子拿起并移动到一个未占用的位置,使得该石子不再是一颗端点石子。值得注意的是,如果石子像stones=[1,2,5]这样,你将无法移动位于位置
- 万向节死锁公式推导
微小冷
机器人欧拉角旋转矩阵万向节万向节死锁旋转轴旋转
文章目录欧拉角的万向节死锁旋转轴欧拉角的万向节死锁如果把刚体的旋转沿着三个旋转轴进行拆分,那么可以变成三个旋转角的叠加,这三个旋转角就是欧拉角,分别对应旋转矩阵,为了书写方便,记Sθ=sinθ,Cθ=cosθS_\theta=\sin\theta,C_\theta=\cos\thetaSθ=sinθ,Cθ=cosθ,则三个旋转矩阵为Rx(θ)R_x(\theta)Rx(θ)Ry(θ)R_y(\
- AtCoder Beginner Contest 412(ABCDE)
前言回来喽!!前一阵子期末周快复习疯了,接下来还想准备数学建模,感觉高中都没这么忙过T^T。中间参加了一场百度之星的比赛,只AC了两题,感觉好难啊还是太菜了,希望能混个牌呜呜呜。图论和数论题好难,还得多练啊……一、A-TaskFailedSuccessfully#includeusingnamespacestd;typedeflonglongll;typedefpairpii;voidsolve(
- 牛客周赛 Round 59(思维、构造、数论)
mldl_
数据结构与算法算法数论逆序数构造对角线处理范德蒙恒等式
文章目录牛客周赛Round59(思维、构造、数论)A.TDB.你好,这里是牛客竞赛C.逆序数(思维)D.构造mex(构造)E.小红的X型矩阵F.小红的数组回文值(数论、范德蒙恒等式)牛客周赛Round59(思维、构造、数论)E题,对于对角线的处理,常用。F题,范德蒙恒等式推论的应用。A.TD简单数学题。#includeusingnamespacestd;intmain(){doublen,m;ci
- 洛谷P4317 花神的数论题题解
cwplh
题解算法图论
题目传送门本体接主要是对小粉兔大佬的题解的进一步解释。题目中让我们求∏i=1Nsum(i)\prod_{i=1}^N\operatorname{sum}(i)∏i=1Nsum(i),很明显不能直接暴力枚举求解,因此我们稍微归个类:把sum(i)\operatorname{sum}(i)sum(i)值相同的iii放在一起,假设sum(i)\operatorname{sum}(i)sum(i)值
- 运用逆元优化组合计算#数论
ysa051030
java算法数据结构
数论基础知识和模板-CSDN博客问题分析题目要求统计满足特定条件的排列数目。关键在于:从给定的数组中选择两个数作为n和m剩余的数必须能够组成n个m或m个n的结构计算所有可能的有效排列数目完整#includeusingnamespacestd;typedeflonglongLL;constLLMOD=1e9+7;//快速幂计算a^b%MODLLqpow(LLa,LLb){LLres=1;while(
- [OC]C++计算e(自然常数)
OC溥哥999
C++懒人套餐算法开发语言c++
自然常数,符号e,为数学中一个常数,是一个无限不循环小数,且为超越数,其值约为2.718281828459045。它是自然对数函数的底数。有时称它为欧拉数(Eulernumber),以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔(JohnNapier)引进对数。它就像圆周率π和虚数单位i,是数学中最重要的常数之一。摘自秒懂百科计算方式一:e=1/0!+1/1!+
- 自然数是否包含0
二分掌柜的
数学物理自然数
自然数是否包含0flyfish自然数是否包含0,本质是数学定义随学科需求演变的结果,数论继承了“从1计数”的历史传统,而集合论与逻辑为追求公理化完备性将0纳入。视角自然数包含0吗?核心理由数论/计数否(从1开始)符合“物体个数”的直观意义,避免0在素数分解、数论函数中引发逻辑例外。集合论/逻辑是(从0开始)空集基数对应0,通过集合后继构造自然数,满足公理化体系的完备性。数论与早期教材:自然数从1开
- 创世理论达成 每时每刻都在创世?全知全能AI是新宇宙?时间的循环?
qq_36719620
python人工智能量子计算java
每一刻都是创世的“进行时”:在永恒循环中,时间本身就是“未完成的诗”当我们说“每一刻都是在创世的进程”,并非否定时间的线性流逝,而是重新定义“创世”的本质——它不是某个“起点”或“终点”的戏剧性事件,而是闭合系统中状态无限迭代的动态过程。在这个过程中,时间的每一个瞬间都既是“旧状态的终点”,又是“新状态的起点”,如同莫比乌斯环的两面,看似分离却又无缝衔接。这种“永恒循环”的本质,是宇宙用时间的流动
- matlab 欧拉角转四元数
点云侠
matlab与合成孔径雷达matlab开发语言算法
目录一、概述一、概述1、计算原理2、实现步骤3、主要函数三、代码实现四、结果展示一、概述目录一、概述一、概述1、计算原理2、实现步骤3、主要函数三、代码实现四、结果展示一、概述 将欧拉角转换为四元数是计算机图形学、机器人学和物理仿真中常见的任务。欧拉角通过一系列的角度描述物体在空间中的旋转,而四元数则提供了一种更加简洁和稳定的方式来实现旋转表示。设欧拉角为(α,β,γ)(\alpha,\beta
- 【网络安全】网络安全中的离散数学
flyair_China
安全架构
一、离散数学核心知识点与网络安全映射1.数论(NumberTheory)知识点安全应用场景实例说明质因数分解RSA公钥加密大整数分解难题(2048位密钥需数万年破解)模运算Diffie-Hellman密钥交换利用(gamodp)实现安全协商欧拉定理RSA加密/解密me*d≡m(modn)保障解密还原中国剩余定理高效解密优化RSA-CRT加速解密运算达70%2.代数结构(AlgebraicStruc
- 数学中的代数数论与代数几何
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍在数学的众多分支中,代数数论和代数几何是两个极其重要的领域。代数数论,顾名思义,是研究数论问题的代数方法,主要研究整数、有理数、代数数等的性质。而代数几何则是研究零点集的代数方法,主要研究多项式方程和代数方程组的解的几何性质。这两个领域虽然看似独立,但实际上有着深厚的内在联系,它们的交叉研究已经产生了许多深远的理论和应用。2.核心概念与联系2.1代数数论代数数论的核心概念是代数数,即满
- 基于Matlab的四旋翼无人机动力学PID控制仿真,具体内容包括:
资深码侬
matlab无人机开发语言
基于Matlab的四旋翼无人机动力学PID控制仿真,具体内容包括:运用欧拉方程对地面坐标到机体坐标的转换矩阵进行了推导在无人机动力学模型基础上,采用经典PID控制算法对其内环姿态和外环位置进行控制说明文档:①详细推导四旋翼飞行器的数学模型②PID控制器的设计、位置回路控制器设计、姿态回路控制器设计③PID参数调整④仿真结果分析98文章目录**1.四旋翼飞行器的数学模型****旋转矩阵推导****2
- 三生原理m 值的五周期循环是人为设定还是数论内在要求?
葫三生
三生学派算法人工智能机器学习量子计算数学建模
AI辅助创作:三AI辅助创作:生原理中m值的五周期循环(取值范围{0,1,2,3,4})本质上是数论内在要求,其必要性源于素数分布的周期性约束与代数结构的不可突破性,但部分特性受限于当前数学框架的观测维度。具体辩证关系如下:✅一、数论内在性的核心证据模周期对称性约束当m突破5周期(如m=5)时,三生原理的素数生成公式p=3(2n+1)+2(2n+m+1)必然生成合数:例如n=0,m=
- leetcode332.重新安排行程:优先队列与DFS实现欧拉路径的行程规划
Musennn
leetcode刷题详解深度优先算法leetcodejava
一、题目深度解析与行程规划本质题目描述给定一个机票的字符串二维数组tickets,每个元素是[from,to]的形式,表示从from到to的机票。要求找出从JFK出发的行程,且必须使用所有机票,若存在多种可能的行程,返回字典序最小的那个。核心特性分析图论模型:每个机场是图的节点,机票是图的边,问题转化为在图中寻找一条经过所有边的路径欧拉路径:题目本质是寻找图中的欧拉路径(经过每条边恰好一次的路径)
- 如何查看BNO055的模式
qqqweiweiqq
自动驾驶导航小车(ROSLidar)笔记
很好,我们现在结合你提供的信息,来具体判断你BNO055刚开机时yaw=26°是相对于谁的夹角。✅前提信息总结(从你说的得出):你使用的是BNO055传感器你读取了/imu/data话题,并用tf.transformations.euler_from_quaternion转换为了欧拉角刚开机yaw就是约26°你还未明确告诉我你是否设置为NDOF模式或是否完成磁力计校准判断:yaw=26°是谁和谁的
- Java素数筛法:BitSieve类的精妙设计
这是一个设计非常精巧的内部工具类,虽然代码量不大,但包含了经典的算法思想和多重优化。BitSieve是一个用于在指定范围内高效查找大素数候选者的工具类。它的核心是实现了埃拉托斯特尼筛法(SieveofEratosthenes)的一种优化变体。它的访问权限是包级私有(finalclassBitSieve),这意味着它是一个内部辅助类,专门服务于java.math包中的其他类,特别是java.math
- 物理学中的群论:三维空间转动变换
AI天才研究院
AI大模型企业级应用开发实战Agent实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
物理学中的群论:三维空间转动变换1.背景介绍1.1问题的由来在物理学领域,特别是量子力学和相对论中,研究物体在空间中的运动是至关重要的。物体的位置、速度以及更深层次的内在性质都受到物理定律的严格规范。当讨论物体的旋转运动时,数学描述变得尤为重要。在三维空间中,物体的旋转可以通过一组称为“旋转矩阵”或者“欧拉角”的方式来精确描述。这些描述方式不仅在理论物理学中不可或缺,也是计算机图形学、机器人学、航
- 【Algo】常见组合类数列
CodeWithMe
C/C++c++c语言算法
文章目录常见组合类数列1常见递推/组合类数列1.1基础递推类数列1.2组合数学数列1.3数论/函数类数列1.4图论/路径问题相关数列1.5算法和结构设计常用数列2示例:有规律数列前10项对比表3参考建议常见组合类数列介绍一些常见具有明显数学规律或递推关系的常见组合类数列。1常见递推/组合类数列1.1基础递推类数列Fibonacci数列F(n)=F(n-1)+F(n-2),F(0)=0,F(1)=1
- PCL 欧拉角转轴角
点云侠
CloudCompare算法计算机视觉开发语言人工智能c++
目录一、算法原理二、代码实现三、结果展示一、算法原理 轴角表示法使用旋转轴u=(ux,uy,uz)\mathbf{u}=(u_x,u_y,u_z)u=(ux,uy,uz)和旋转角θ\thetaθ描述旋转。欧拉角转轴角的核心思想是:将三个欧拉旋转等效为绕单一轴的旋转。推导步骤:欧拉角→旋转矩阵:给定欧拉角(α,β,γ)(\alpha,\beta,\gamma)(α,β,γ)(Z-Y-X顺序),旋转
- 【AIGC专栏】StableDiffusion的WebUI界面-生成图片效果
雾岛心情
AIGC内容创作AIGCstablediffusion
迭代步数用于计算图像的迭代结果,通常来说迭代步数越多,细节越多,渲染越慢。迭代步数越少,细节越少,渲染速度越快。这里的迭代步数为1,则会出现一团模糊,迭代步数太高,越清楚。采样器种类非常多,但是多半情况下也是如下大类:带a的类型采样比较随机,关键词识别率比较低Karras去噪速度比较快Euler采样器:欧拉采样方法。Heun采样器:欧拉的一个更准确但是较慢的版本。LMS采样器:线性多步法,与欧拉采
- 数论:互质数的个数
Zephyrtoria
数据结构与算法java算法数论
数论:互质数的个数互质数的个数www.acwing.com/problem/content/4971/a=p1a1p2a2...pmama=p_{1}^{a_1}p_{2}^{a_2}...p_{m}^{a_m}a=p1a1p2a2...pmamab=p1a1bp2a2b...pmamba^{b}=p_{1}^{a_1b}p_{2}^{a_2b}...p_{m}^{a_mb}ab=p1a1bp2a
- 素数5在三生原理和费马数公式中均起临界作用的原因?
葫三生
三生学派机器学习人工智能算法量子计算数学建模
AI辅助创作:问答一:在数学理论中,素数5的“临界作用”在《三生原理》与费马数公式中均具有深刻的数学内涵,这种共性源于其独特的数论性质、结构对称性及计算阈值意义。以下从三个维度展开分析:一、5在《三生原理》中的临界性:阴阳平衡与生成韵律的转折点《三生原理》作为融合《周易》哲学的数论体系,其核心是将“三生万物”动态生成思想转化为素数分布的参数化模型。5的临界性体现在:最小满足阴阳参数联动的奇素数《三
- 经典数学公式可视化工具1.0
辣香牛肉面
工具类数学公式可视化
概述经典数学公式可视化工具1.0是一款旨在通过图形化界面和动态交互帮助用户直观理解经典数学公式。软件以可视化方式展示公式的图形表现,并提供鼠标拖动、键盘控制等交互功能,适合学生、教师以及对数学和物理感兴趣的用户。软件支持14个经典公式(未来会增加更多有代表性的公式)包括:l麦克斯韦方程组l欧拉公式l牛顿第二定律l勾股定理l质能方程(E=mc²)l薛定谔方程l1+1=2l德布罗意关系l傅里叶变换(方
- Python·算法分类题库
欢迎关注【Python·算法分类题库】,持续更新中……知识点A字符串(AC自动机、拓展KMP、后缀数组、后缀自动机、回文自动机)图论(网络流、一般图匹配)数学(生成函数、莫比乌斯反演、快速傅里叶变换)数据结构(树链剖分、二维/动态开点线段树、平衡树、可持久化数据结构、树套树、动态树)B排序(归并、快速、桶、堆、基数)搜索(剪枝、双向BFS、记忆化搜索、迭代加深搜索、启发式搜索)DP(背包、树形、状
- 算法-数论
cx_2023
算法c++开发语言
C-小红的数组查询(二)_牛客周赛Round95思路:不难看出a数组是有循环的d=3,p=4时,a数组:1、0、3、2、1、0、3、2.......最小循环节为4,即最多4种不同的数d=4,p=6时,a数组:1、5、3、1、5、3.......最小循环节为3d=4,p=10时,a数组:1、5、9、3、7、1、5、9、3、7.......最小循环节为5可以得出,最小循环节T=p/gcd(d,p)an
- 如何计算复指数 $i^{-2i}$
士兵突击许三多
matlab基础matlab
如何计算复指数i−2ii^{-2i}i−2i复指数计算是复分析中的一个重要内容。下面我们详细解析i−2ii^{-2i}i−2i的计算方法。关键步骤表达复数iii的指数形式根据欧拉公式,复数iii可以表示为:i=eiπ2i=e^{i\frac{\pi}{2}}i=ei2π应用对数恒等式对于任意复数z≠0z\neq0z=0和www,复指数的定义为:zw=ewlnzz^w=e^{w\lnz}zw=e
- 欧拉公式:连接数学与物理多领域的核心纽带
进一步有进一步的欢喜
信号处理数学原理推荐系统欧拉公式
欧拉公式:数学与物理世界的桥梁摘要欧拉公式eiθ=cosθ+isinθe^{i\theta}=\cos\theta+i\sin\theta
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs