- 没有免费的午餐定理
做程序员的第一天
机器学习人工智能机器学习
没有免费午餐定理(NoFreeLunchTheorem,NFL)是由Wolpert和Macerday在最优化理论中提出的.没有免费午餐定理证明:对于基于迭代的最优化算法,不存在某种算法对所有问题(有限的搜索空间内)都有效.如果一个算法对某些问题有效,那么它一定在另外一些问题上比纯随机搜索算法更差.也就是说,不能脱离具体问题来谈论算法的优劣,任何算法都有局限性.必须要“具体问题具体分析”.没有免费午
- 袁亚湘院士上《开讲啦》变数学魔术啦!
MatheMagician
人工智能hashtabletabxhtmlj2ee
早点关注我,精彩不迷路!上个月中,我敬仰已久的袁亚湘院士登上了央视《开讲啦》的舞台,给刚开学不久的孩子们献上了精彩的演讲,演讲全程大家可看视频慢慢欣赏:视频1袁亚湘院士《开讲啦》演讲袁老师是知名的最优化理论的专家,在我还在读大三的时候,还曾通过天大数学系黄老师介绍,邮件联系袁老,想找他去读最优化方向的研究生。无奈专业差距太大,在流程上也几乎走不通,不过袁老师还是耐心地给我回了信,并且给了我很多鼓励
- 最优化理论习题(与考试相关)
ˇasushiro
最优化理论笔记
文章目录凸集与凸函数的证明单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法凸集与凸函数的证明凸函数证明就是求HessianHessianHessian矩阵是否为正定矩阵即可单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法
- 最优化基础 - (最优化问题分类、凸集)
Big David
数值优化数值优化最优化问题分类凸集Farkas引理
系统学习最优化理论什么是最优化问题?决策问题:(1)决策变量(2)目标函数(一个或多个)(3)一个可由可行策略组成的集合(等式约束或者不等式约束)最优化问题基本形式1最优化问题分类根据可行域S划分:无约束/约束优化根据函数的性质划分:线性规划/非线性规划根据可行域的性质划分:离散优化/连续优化根据函数的向量性质划分:单目标/多目标优化根据规划问题有关信息的确定性划分:随机/模糊/确定性规划2预备知
- 《学校心理学--体验式团体教育模式理论与实践》第一、二章读后感
宋艳云学校心理学
今天,我认真学习了《学校心理学--体验式团体教育模式理论与实践》第一、二章。第一章主要阐述了学校心理学的基本定义、发展历史和现状、研究方法,以及相关学科的区别和联系等;第二章主要介绍和阐述了教育教学最优化理论、国内外教育教学最优化的进程,以及教育教学最优化探索新背景下引发的体验式团体教育模式。虽然我国一直提倡素质教育,提倡减轻学生过重的课业负担,但应试教育还是现代中国所有教育模式中最优的必然选择。
- powell算法简介
重露成涓滴
姓名:彭帅学号:17021210850【嵌牛导读】:Powell是利用函数值来构造共轭搜索方向的一种共轭搜索方法,由于对于n维正定二次函数,共轭搜索方向具有n次收敛的特性,所以powell是直接搜索法中十分有效的一种算法。【嵌牛鼻子】:优化算法【嵌牛提问】:powell算法简介【嵌牛正文】:复杂函数的全局最优化问题是在求解各种复杂工程与科学计算问题中提炼出来的亟待解决的计算问题,最优化理论方法是应
- [足式机器人]Part2 Dr. CAN学习笔记- 最优控制Optimal Control Ch07-2 动态规划 Dynamic Programming
LiongLoure
控制算法学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-最优控制OptimalControlCh07-2动态规划DynamicProgramming1.基本概念2.代码详解3.简单一维案例1.基本概念RichoardBellman最优化理论:Anoptimalpolicyhasthepropertythatwhatevertheinitialstateandinitialdecision
- 最优化理论与方法复习(6)---凸集和凸函数
冒冒菜菜
最优化理论与方法最优化理论与方法凸集凸函数期末复习
文章目录1.凸集1.1定义1.2例题2.凸函数2.1判断方式2.2例题1.凸集1.1定义 设SSS为nnn维欧式空间RnR^nRn一个集合,对于任意的X(1)X^{(1)}X(1),X(2)∈SX^{(2)}∈SX(2)∈S,及每个实数λ∈[0,1]λ∈[0,1]λ∈[0,1],有λX(1)+(1−λ)X(2)∈SλX^{(1)}+(1-λ)X^{(2)}∈SλX(1)+(1−λ)X(2)∈S,则
- 最优化理论期末复习笔记 Part 2
hijackedbycsdn
笔记最优化凸优化
数学基础线性代数从行的角度从列的角度行列式的几何解释向量范数和矩阵范数向量范数矩阵范数的更强的性质的意义几种向量范数诱导的矩阵范数1范数诱导的矩阵范数无穷范数诱导的矩阵范数2范数诱导的矩阵范数各种范数之间的等价性向量与矩阵序列的收敛性函数的可微性与展开一维优化问题牛顿莱布尼茨公式对多维的拓展Lipschitz连续中值定理凸优化问题凸函数的判断f在D一阶可微正定矩阵f在D二阶可微无约束问题的最优性条
- 9-11月学习小结
宋艳云学校心理学
河南焦作修武宋艳云近段时间,我认真学习了《学校心理学--体验式团体教育模式理论与实践》前几章。通过学习,我了解到学校心理学的基本定义、发展历史和现状、研究方法,以及相关学科的区别和联系等;教育教学最优化理论、国内外教育教学最优化的进程,以及教育教学最优化探索新背景下引发的体验式团体教育模式。虽然我国一直提倡素质教育,提倡减轻学生过重的课业负担,但应试教育还是现代中国所有教育模式中最优的必然选择。所
- 最优化理论期末复习笔记 Part 1
hijackedbycsdn
笔记最优化凸优化
数学基础线性代数从行的角度从列的角度行列式的几何解释向量范数和矩阵范数向量范数矩阵范数的更强的性质的意义几种向量范数诱导的矩阵范数1范数诱导的矩阵范数无穷范数诱导的矩阵范数2范数诱导的矩阵范数各种范数之间的等价性向量与矩阵序列的收敛性函数的可微性与展开一维优化问题牛顿莱布尼茨公式对多维的拓展Lipschitz连续中值定理凸优化问题凸函数的判断f在D一阶可微正定矩阵f在D二阶可微无约束问题的最优性条
- 【自动驾驶中的SLAM技术】第2讲:基础数学知识回顾
兔子不吃草~
自动驾驶中的SLAM技术自动驾驶人工智能机器学习
第二讲:基础数学回顾文章目录第二讲:基础数学回顾1几何学1.1坐标系1.2坐标变换①空间向量②基变换③坐标变换④总结1.3四元数与旋转向量2运动学2.1李群视角2.2四元数视角2.3四元数的李代数与旋转向量间的转换2.4SO(3)+t上的运动学2.5线速度与加速度2.6扰动模型2.7关于左扰动和右扰动的选择2.7.1第一种形式2.7.2第二种形式2.8运动学示例:圆周运动3滤波器与最优化理论3.1
- 最优化理论复习--对偶单纯形方法及灵敏度分析
ˇasushiro
最优化理论矿大往事经验分享人工智能
对偶单纯形方法定义:设x(0)x^{(0)}x(0)是(L)问题的基本解(不一定是可行解(极点)),如果它的对偶问题的解释可行的,则称x(0)x^{(0)}x(0)为原问题的对偶可行基本解从而衍生出结论:当对偶可行的基本解是原问题的可行解时,由于判别数=0>=0>=0了,而是要保证判别数是=0>=0>=0,尽量将判别数化为=0>=0>=0的方法也对称过来了的,步骤变成了先根据最小的右端项B−1bB
- 最优化理论与方法---一维搜索
冒冒菜菜
最优化理论与方法最优化理论与方法一维搜索期末复习
文章目录1.牛顿法2.割线法3.抛物线法1.牛顿法2.割线法 注:抛物线法其实就是牛顿法的近似。因为[xk−xk−1]/[f′(xk)−f′(xk−1)][x^k-x^{k-1}]/[f'(x^k)-f'(x^{k-1})][xk−xk−1]/[f′(xk)−f′(xk−1)]极限就是1/f′′(xk)1/f''(x^k)1/f′′(xk)。3.抛物线法
- [最优化理论] 梯度下降法 + 精确线搜索(单峰区间搜索 + 黄金分割)C++ 代码
hijackedbycsdn
c++最优化理论
这是我的课程作业,用了Eigen库,最后的输出是latex的表格的一部分具体内容就是梯度下降法+精确线搜索(单峰区间搜索+黄金分割)从书本的Matlab代码转译过来的其实,所以应该是一看就懂了这里定义了两个测试函数fun和fun2整个最优化方法包装在SteepestDescent类里面用了模板封装类,这样应该是double和Eigne的Vector都可以支持的用了tuple返回值,用了functi
- 教学是一门慢的艺术
赤木晴子L
好教师也要慢慢来,对待学生、对待生命、对待心灵,需要的是诚心、耐心、恒心。教学效果的落脚点是学而不是教,学生有无进步和发展是衡量教学有没有效果的唯一指标。教学有没有效果,并不是指教师教得好不好或教得认真不认真,而是指学生有没有学到什么或学得好不好,尽管它们之间也有各种关系。苏联教育家巴班斯基提出了教学过程最优化理论。按照巴班斯基的说法,“最优的”这一术语是指“从一定标准来看是最好的”。这里的“标准
- 最优化理论
HI_Forrest
学习笔记c++
最优化理论资料一optimalcondition最优性条件概念二一维搜索逐次下降法iterativedecent单峰函数二分法dichotomoussearch三资料B站最优化理论与算法上交最优化方法一目标函数:需要优化的函数决策变量,可以调整变化的量约束集,决策变量的可行集无约束优化,决策变量任意值约束优化,决策变量范围有限制非线性规划:代价函数或者约束是非线性的。其他规划问题:整数规划inte
- 第一章 最优化理论基础
是璇子鸭
最优化算法矩阵
内容来自马昌凤编著的《最优化方法及其Matlab程序设计》,文章仅为个人的学习笔记,感兴趣的朋友详见原书1最优化问题的数学模型简单来说,最优化问题就是求一个多元函数在某个给定集合上的极值,其一般表达为:minf(x)minf(x)minf(x)s.t.x∈Ks.t.x∈Ks.t.x∈K其中,KKK为可行域,xxx为决策变量,s.t.是subjectto(受限于)的缩写。非线性规划:minf(x)m
- 最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法
七七喝椰奶
数学建模应当掌握的十类算法算法
介绍当涉及到模拟退火法、神经网络和遗传算法时,它们都是优化和搜索问题的常见算法。下面我将逐个介绍这些算法的基本原理和应用。1.模拟退火法(SimulatedAnnealing):模拟退火法是一种全局优化算法,模拟了金属冶炼中的退火过程。它通过接受更差的解决方案的可能性来避免陷入局部最优解。模拟退火法在搜索空间中随机移动,并逐渐减少移动的范围,以找到全局最优解。主要步骤包括初始化解决方案,定义能量函
- 【兔子王赠书第4期】用ChatGPT轻松玩转机器学习与深度学习
Want595
#《粉丝福利》chatgpt机器学习深度学习
文章目录前言机器学习深度学习ChatGPT推荐图书粉丝福利尾声前言兔子王免费赠书第4期来啦,突破传统学习束缚,借助ChatGPT的神奇力量,解锁AI无限可能!机器学习机器学习是人工智能领域的一个重要分支,它的目的是让计算机系统能够自动完成特定任务,而不需要人类专门为其编写指令。机器学习所涉及的技术和算法主要包括统计学、概率论、最优化理论、信息论等。在未来的人工智能时代,机器学习将成为重要的基础技术
- 立体匹配--中值滤波
zfywen
计算机视觉人工智能c++
立体匹配文章目录一.课题说明二.概要设计三.算法设计四.源程序及注释五.运行及调试分析六.课程设计总结一、课题说明立体匹配是立体视觉从图像生成三维点云的常规手段。立体匹配算法主要是通过建立一个能量代价函数,通过此能量代价函数最小化来估计像素点视差值。立体匹配算法的实质就是一个最优化求解问题,通过建立合理的能量函数,增加一些约束,采用最优化理论的方法进行方程求解,这也是所有的病态问题求解方法。二、概
- 人工智能数学知识
你美依旧
1线性代数向量向量空间;矩阵线性变换特征值特征向量;奇异值奇异值分解1线性代数是人工智能的数学基础之一2线性代数的核心意义在于将具体事物抽象为数学对象3线性代数描述着食物的静态(向量)和(动态变换)的特征2概率论与统计随机事件;条件概率全概率贝叶斯概率统计量常见分布;基本原理3最优化理论极限导数;线性逼近泰勒展开凸函数Jensen不等式;最小二乘法;梯度梯度下降1先初始化一下权重参数2然后利用优化
- 【电子书资源】数值方法&最优化理论&算法&凸优化 ---书籍调研(附网盘下载地址)...
十年一梦实验室
算法python人工智能机器学习大数据
随着计算机和计算方法的飞速发展,几乎所有学科都走向定量化和精确化,从而产生了一系列计算性的学科分支,如计算物理、计算化学、计算生物学、计算地质学、计算气象学和计算材料学等,计算数学中的数值计算方法则是解决“计算”问题的桥梁和工具。我们知道,计算能力是计算工具和计算方法的效率的乘积,提高计算方法的效率与提高计算机硬件的效率同样重要。科学计算已用到科学技术和社会生活的各个领域中。数值计算方法,是一种研
- 数学建模:最优化问题及其求解概述
AGI_Player
数学建模数学建模
数学建模:最优化问题及其求解概述最优化问题定义分类离散优化问题连续优化问题求解此博客围绕运筹学以及最优化理论的相关知识,通俗易懂地介绍了最优化问题的定义、分类以及求解算法。最优化问题定义数学优化(MathematicalOptimization)问题,也叫最优化问题,属于运筹学研究的主要内容,它是指在一定约束条件下,求解一个目标函数的最大值(或最小值)问题。这种问题在生活中很常见,例如如何利用有限
- 【最优化理论】人工智能与最优化理论的联系
果壳中的robot
人工智能机器学习算法
1.最优化理论的主要分支最优化理论的主要分支有两类,包括针对一般问题的数学规划模型以及针对特定问题的数学规划模型,其各自涵盖的范围如下:一般问题的数学规划模型:线性规划整数规划非线性规划动态规划网络流优化…特定问题的数学模型:网络计划排队论存储论决策论对策论…2.优化方法简述例如优化问题为maxf(x)\maxf(x)maxf(x),其函数图像如下:优化的基本方法是:从a,b之间的任一点出发,朝
- 【最优化理论】线性规划标准模型的基本概念与性质
果壳中的robot
算法机器学习动态规划数学建模性能优化
我们在中学阶段就遇到过线性规划问题,主要是二维的情况,而求解的方法一般是非常直观、高效的图解法。根据过往的经验,线性规划问题的最优目标值一般在可行域的顶点处取得,那么本文就对这个问题进行更深入的探讨,维度也从二维推广至高维,内容主要包括以下问题:线性规划问题的可行域有哪些性质?线性规划问题的可行域顶点有哪些特点?为什么可行域的顶点有最优解?顶点的数学描述?高维模型有哪些性质?1.线性规划模型的一些
- 机器人中的数值优化|【二】最速下降法,可行牛顿法的python实现,以Rosenbrock function为例
影子鱼Alexios
algorithmpythonpython机器人人工智能数学
机器人中的数值优化|【二】最优化方法:最速下降法,可行牛顿法的python实现,以Rosenbrockfunction为例在上一节中提到了我们详细探讨了数值优化/最优化理论中的基本概念和性质,现在开始使用python对算法进行实现。上一节链接:机器人中的数值优化|【一】数值优化基础导入依赖导入依赖库并定义常量,C_CONSTANT为步长超参数,取0~1之间,停机准则STOP_CONSTANT,意为
- 神经网络基础原理(二)----分类问题(含Tensorflow 2.X代码)
天蒙光
深度学习神经网络tensorflow机器学习深度学习
举线性回归的例子只是为了从最简单的角度来介绍神经网络的执行流程。神经网络在拟合线性函数方面的确存在得天独厚的优势。事实上,如果你对最优化理论熟悉,会发现神经网络的底层原理与最优化理论是一致的(目的都是求某一目标函数的极值)。神经网络擅长的并不仅限于拟合线性函数。分类问题是神经网络最经典的应用之一。所谓的分类问题,是指给定m个学习样本,如何根据先验知识,将这m个样本分成k类。解决分类问题第一步:数据
- Compositional Minimax Optimization学习之路
他不是混子QAQ
学习
梯度最优化理论最优化基础---基本概念:凸优化、梯度、Jacobi矩阵、Hessian矩阵_哔哩哔哩_bilibili从图像来看:存在两点连线上的点不在集合内定义ax1+(1-a)x2其实就是两点连线上的点可用与函数围成的面积和与坐标轴围成的面积角度理解凸函数凸优化在定义域和F(X)都是凸集的问题(凸凸问题),就是凸优化jacobi广义导数n维映射到m维梯度的雅可比矩阵就是海森矩阵动量法(Mome
- 机器学习笔记之最优化理论与算法(十二)无约束优化问题——共轭梯度法
静静的喝酒
最优化理论与方法机器学习深度学习共轭梯度法非线性共轭梯度法FR方法PRP方法n步重启策略
机器学习笔记之最优化理论与方法——共轭梯度法引言回顾:共轭方向法的重要特征线性共轭梯度法共轭方向公式的证明过程关于线搜索公式中参数的化简关于线搜索公式中步长部分的化简关于线搜索公式中共轭方向系数的化简参数化简的目的非线性共轭梯度法(FR,PRP方法)关于非线性共轭梯度法的说明引言上一节主要介绍了共轭方向法的重要特征以及相关证明,本节将介绍共轭方向法的代表算法——共轭梯度法。回顾:共轭方向法的重要特
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc