求有多少对 ( a , b ) (a,b) (a,b)满足 1 ≤ a < b ≤ n 1\leq a<b\leq n 1≤a<b≤n且 a + b ∣ a b a+b|ab a+b∣ab
若 g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1,那么 a + b ∤ a b a+b∤ab a+b∤ab
若 g c d ( a , b ) ≠ 1 gcd(a,b)\neq 1 gcd(a,b)̸=1,设 d = g c d ( a , b ) , i = d a , j = d b d=gcd(a,b),i=da,j=db d=gcd(a,b),i=da,j=db
∴ ( i + j ) ∣ i j d \therefore (i+j)|ijd ∴(i+j)∣ijd
∵ \because ∵若 g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1,那么 a + b ∤ a b a+b∤ab a+b∤ab
∴ ( i + j ) ∣ d \therefore (i+j)|d ∴(i+j)∣d
也就是求有多少个三元组 ( i , j , d ) (i,j,d) (i,j,d),满足 i d , j d ≤ n , g c d ( i , j ) = 1 , ( i + j ) ∣ d id,jd\leq n,gcd(i,j)=1,(i+j)|d id,jd≤n,gcd(i,j)=1,(i+j)∣d
那么 = ∑ i = 1 n ∑ j = 1 i − 1 ⌊ ⌊ n i ⌋ i + j ⌋ [ g c d ( i , j ) = 1 ] =\sum_{i=1}^{n}\sum_{j=1}^{i-1}\lfloor\frac{\lfloor\frac{n}{i}\rfloor}{i+j}\rfloor[gcd(i,j)=1] =i=1∑nj=1∑i−1⌊i+j⌊in⌋⌋[gcd(i,j)=1]
= ∑ i = 1 n ∑ j = 1 i − 1 ⌊ n i ( i + j ) ⌋ [ g c d ( i , j ) = 1 ] =\sum_{i=1}^{n}\sum_{j=1}^{i-1}\lfloor\frac{n}{i(i+j)}\rfloor[gcd(i,j)=1] =i=1∑nj=1∑i−1⌊i(i+j)n⌋[gcd(i,j)=1]
套 ∑ k ∣ n μ ( k ) = [ n = 1 ] \sum_{k|n}\mu(k)=[n=1] k∣n∑μ(k)=[n=1]
也就是 = ∑ i = 1 n ∑ j = 1 i − 1 ⌊ n i ( i + j ) ⌋ ∑ k ∣ i , k ∣ j μ ( k ) =\sum_{i=1}^{n}\sum_{j=1}^{i-1}\lfloor\frac{n}{i(i+j)}\rfloor\sum_{k|i,k|j}\mu(k) =i=1∑nj=1∑i−1⌊i(i+j)n⌋k∣i,k∣j∑μ(k)
枚举 k k k可得
= ∑ k = 1 n μ ( k ) ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 i − 1 ⌊ n i k ( i k + j k ) ⌋ =\sum_{k=1}^{n}\mu(k)\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{i-1}\lfloor\frac{n}{ik(ik+jk)}\rfloor =k=1∑nμ(k)i=1∑⌊kn⌋j=1∑i−1⌊ik(ik+jk)n⌋
= ∑ k = 1 n μ ( k ) ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 i − 1 ⌊ ⌊ n i k 2 ⌋ i + j ⌋ =\sum_{k=1}^{n}\mu(k)\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{i-1}\lfloor\frac{\lfloor\frac{n}{ik^2}\rfloor}{i+j}\rfloor =k=1∑nμ(k)i=1∑⌊kn⌋j=1∑i−1⌊i+j⌊ik2n⌋⌋
Wait,这样不会更慢吗?可以发现 i , j , k i,j,k i,j,k的取值只能在 n \sqrt n n范围内,所以
= ∑ k = 1 n μ ( k ) ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 i − 1 ⌊ ⌊ n i k 2 ⌋ i + j ⌋ =\sum_{k=1}^{\sqrt n}\mu(k)\sum_{i=1}^{\lfloor\frac{\sqrt n}{k}\rfloor}\sum_{j=1}^{i-1}\lfloor\frac{\lfloor\frac{n}{ik^2}\rfloor}{i+j}\rfloor =k=1∑nμ(k)i=1∑⌊kn⌋j=1∑i−1⌊i+j⌊ik2n⌋⌋
洛谷dalao证明时间复杂度是 O ( n log n ) O(\sqrt n \log n) O(nlogn),可谓是非常高级了
#include
#include
#define rr register
#define min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef unsigned uit;
const uit N=47001;
uit prime[N>>3],cnt,n;
int mu[N]; bool v[N];
inline long long answ(uit x,uit y){
rr long long ans=0; rr uit t=x<<1;
for(rr uit l=x+1,r;l<t;l=r+1){
if(!(y/l)) return ans;
r=min(y/(y/l),t-1);
ans+=(r-l+1)*(y/l);
}
return ans;
}
signed main(){
scanf("%u",&n);
rr uit m=sqrt(n); rr long long ans=0;
for (rr uit i=1;i<=m;++i){
if (i>1){
if (!v[i]) prime[++cnt]=i,mu[i]=-1;
for (rr uit j=1;j<=cnt&&prime[j]*i<=m;++j){
v[i*prime[j]]=1;
if (i%prime[j]) mu[i*prime[j]]=-mu[i];
else break;
}
}else mu[i]=1;
if (!mu[i]) continue;
for (rr uit j=1;j*i<=m;++j)
ans+=answ(j,n/(i*i*j))*mu[i];
}
printf("%lld",ans);
return 0;
}