ubuntu18.04安装测试cudnn、TensorRT

文章目录

    • 1.Install Cudnn
    • 2.cuda加环境变量
    • 3.Install TensorRT

1.Install Cudnn

  • 1.前提是已经安装好了cuda

  • 2.下载好:

	libcudnn7-doc_7.4.2.24-1+cuda10.0_amd64.deb
	cudnn-10.0-linux-x64-v7.5.0.56.tgz
  • 3.解压cudnn-10.0-linux-x64-v7.5.0.56.tgz:tar -xzvf cudnn-10.0-linux-x64-v7.5.0.56.tgz

执行:

    $ sudo cp cuda/include/cudnn.h /usr/local/cuda/include
    $ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
    $ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
  • 4.dpkg -i libcudnn7-doc_7.4.2.24-1+cuda10.0_amd64.deb

  • 5.验证:

	cp -r /usr/src/cudnn_samples_v7/ $HOME

	cd  $HOME/cudnn_samples_v7/mnistCUDNN

	make clean && make

	./mnistCUDNN

如果成功则显示:

If cuDNN is properly installed and running on your Linux system, you will see a message similar to the following:

Test passed!

  • 查看cudnn版本
	cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

==============================================================================================

2.cuda加环境变量

sudo vim ~/.bashrc

加入:

export PATH="/usr/local/cuda-10.0/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-10.0/lib64:$LD_LIBRARY_PATH"
export PATH="/usr/local/cuda/bin:$PATH"

执行:

source ~/.bashrc

==============================================================================================

3.Install TensorRT

  • 1.Go to: https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html
  • 2.Download
  • 3.Install programme
$ sudo dpkg -i nv-tensorrt-repo-ubuntu1804-cuda10.0-trt5.0.2.6-ga-20181009_1-1_amd64.deb
$ sudo apt-key add /var/nv-tensorrt-repo-cuda10.0-trt5.0.2.6-ga-20181009/7fa2af80.pub
$ sudo apt-get install update
$ sudo apt-get install tensorrt
  • If using Python 2.7:
$ sudo apt-get install python-libnvinfer-dev
  • If using Python 3.x:
$ sudo apt-get install python3-libnvinfer-dev
  • If you plan to use TensorRT with TensorFlow:
$ sudo apt-get install uff-converter-tf
  • 4.Verify the installation
    $ dpkg -l | grep TensorRT
  You should see something similar to the following:

    ii  graphsurgeon-tf	5.1.2-1+cuda10.1	amd64	GraphSurgeon for TensorRT package
    ii  libnvinfer-dev	5.1.2-1+cuda10.1	amd64	TensorRT development libraries and headers
    ii  libnvinfer-samples	5.1.2-1+cuda10.1	amd64	TensorRT samples and documentation
    ii  libnvinfer5		5.1.2-1+cuda10.1	amd64	TensorRT runtime libraries
    ii  python-libnvinfer	5.1.2-1+cuda10.1	amd64	Python bindings for TensorRT
    ii  python-libnvinfer-dev	5.1.2-1+cuda10.1	amd64	Python development package for TensorRT
    ii  python3-libnvinfer	5.1.2-1+cuda10.1	amd64	Python 3 bindings for TensorRT
    ii  python3-libnvinfer-dev	5.1.2-1+cuda10.1	amd64	Python 3 development package for TensorRT
    ii  tensorrt	5.1.2.x-1+cuda10.1	amd64	Meta package of TensorRT
    ii  uff-converter-tf	5.1.2-1+cuda10.1	amd64	UFF converter for TensorRT package

你可能感兴趣的:(CUDA,深度学习)